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Productivity gains in agriculture are crucial for economic and employment development, yet understanding 

how they interact is still evolving. Agricultural productivity, particularly crop production, is expected to 

increase by more than 60% to prevent a global food crisis by 2050. Increased farm production and 

productivity require inputs and technical services. The farming sector must meet global food demands amid 

weather changes and unexpected health crises.  

 

Agricultural production must increase by about 70% to cater to food needs in the coming years. This paper 

utilizes machine learning applications in crop production as an alternative to the current agricultural 

systems in the United States. Applying machine learning techniques ensures agricultural productivity and 

is a fruitful step toward mitigating the possibility of a global food crisis.  
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INTRODUCTION 

 

Food is a basic human need at the center of our dinner tables. However, the sustainability of its 

production has recently become uncertain and complicated due to the increasing food demand by the rising 

global population. The current world population is 7.98 billion and is estimated to hit 8 billion by November 

2022, as reported by the United Nations. We live in a world currently unsure about food availability and 

accessibility by 2050, simply because the global population will likely increase to about 9 billion. The 

farming sector must meet global food demands amid weather changes and unexpected health crises. 

Agricultural production must increase by about 70% to cater to food needs in the coming years.(Fusco et 

al., 2020). As old as it sounds, agriculture is one of the industries yet to go through a complete 

metamorphosis in today’s changing world.  

 

Agricultural Productivity 

Productivity gains in agriculture are crucial for economic and employment development, yet 

understanding how they interact is still evolving. Increased farm production and productivity require inputs 

and technical services. These services are needed to grow crops and process, store, and transport produce, 

which creates new jobs and growth in the off-farm stages of the agri-food system (AFS). Moreover, raising 
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farm incomes through increased agricultural productivity improves purchasing power, stimulating 

employment and output growth in non-farm sectors, especially in value-added food chains and non-tradable 

goods and services (Barrett et al., 2020). However, very few organic inputs such as animal manure, crop 

residues, and cover crops are used by smallholder farmers partly because such inputs are challenging to 

utilize in fertility-depleted soils. The agricultural sector plays a significant role in the United States 

economy, contributing.  

  

Overview of Climate Smart Agriculture 

CSA is at the intersection of agricultural science, environmental sustainability, and data science. It 

involves utilizing innovative techniques, including using the internet, mobile phones, drones, remote 

sensing equipment, computers, and servers of farm practices. The fundamental strategy of CSA is a careful 

blend of two crucial United Nations Sustainability Development  

Goals- UNSDG, namely, goal 12- responsible consumption and production, and goal 13-Climate 

Action(Org, n.d.).  

The research aims to identify and build a machine-learning model to optimize current farming decisions 

while ensuring sustainability. The application of machine learning is prevalent in various fields, such as 

health services, transportation, finance, supply chain, and biotechnology. Researchers and analysts have 

recently incorporated it into agriculture to increase yield (Benos et al., 2021). Also, machine learning in 

agriculture is relevant to help small farmers, ranchers, and agricultural analysts strategize to meet global 

food demand (Liakos et al., 2018). This study will be a foundational model for research and analysts to 

improve modeling machine learning techniques in agriculture. By replicating the source codes and 

enhancing the study’s limitations, future research and models deployed could be more robust and have 

better predictive performance. Incorporating data science techniques, machine learning, and the deep neural 

network recently gained much attention and yielded positive results. The benefit of CSA in crop production, 

as highlighted by (Liakos et al., 2018), include but are not limited to the following: Crop Production, Crop 

Mapping, Yield Prediction, Water Management, Soil Management, Weed detection, Pest infestation 

recognition and Plant species recognition.  

Again, this further provides real-time conclusions to farmers using robust predictive machine learning 

algorithms and analysis to assist farmers in making meaningful decisions. These critical decisions make a 

huge difference in the consequential actions of farmers on the environment. For instance, a farmer with 

adequate knowledge of the precise quantity of fertilizer, pesticides, and other chemicals will influence his 

decision on production inputs. These decisions will contribute immensely to increased yield and the 

prevention of excess chemicals which otherwise may seep down the soil into the groundwater table. The 

positive effect of this knowledge could prevent water pollution, which could severely threaten human and 

animal lives. 

Adopting machine learning in agriculture will enhance agricultural productivity. It will be a step toward 

building resiliency and a robust agricultural sector. Finally, this will instill confidence in the global supply 

chain regardless of future uncertainty.  

 

Goals 

The specific goals of the research are:  

• To identify the optimal soil needs of twenty-two cash crops grown in the U.S.  

• To build an effective predictive model with high model accuracy that can anticipate the optimal 

crop given certain soil condititions.  

 

Problem Statement and Justification  

Farmers, ranchers, and other key industry players involved in the global supply chain ensure the food 

on the grocery aisles and our tables. Nevertheless, these key players are yet to benefit entirely from the 

21st-century smart, intelligent innovations. Regardless of the rise in global population, farmers have had to 

bear the weight of food production to feed all. Also, sustainability has become more prevalent due to global 

warming, unpredictable weather patterns, unexpected droughts, and rising sea levels leading to floods. 
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Moreover, over-reliance on fertilizer and pesticides has made this once simple task quite daunting for 

farmers. Hence, the need for efficient agricultural productivity to increase food supply. The overarching 

problem is climate change and its consequential effect on agriculture. In a spiral motion, climate change 

affects the temperature, including rising sea levels which causes flooding and extreme droughts in other 

areas. This change also leads to the adverse effect of salinity intrusion in freshwater bodies, land, and 

different regions.  

Traditional farm practices have been successful but ineffective in meeting global demands.  

The effect of unlikely weather patterns has exposed the vulnerabilities in these farm practices. 

Consequently, there is a need to optimize agricultural production efficiency and enforce environmental 

safety. At the tail end of this is the greater danger these factors pose to human survival through food 

insecurity.  

The remainder of the paper is organized as follows: Section 2 provides a detailed review of recent 

studies that have applied machine learning in agriculture and related studies, while section 3 explains the 

methodology’s procedures for employing machine learning. In section4, the results and performance of the 

Model built are expounded. Finally, the paper’s contribution is concluded, and future research is explained.  

 

Framework of Conventional Agricultural Methods  

Many frameworks exist regarding traditional farming systems derived from the World Agricultural 

Systems. Conventional agricultural methods include a range of non-exhaustive farm operations, including; 

planting, harvesting, pest management, fertilizer application, land tillage, and irrigation, with little attention 

to environmental sustainability (Devkota et al., 2019). These operations tend to be intensive farm systems 

with considerable damage to the land. Various literature has attempted to define conventional agricultural 

methods as any other farm practice that utilizes agrochemicals. However, Chandra et al. (2018) argue that 

the conventional agricultural system interpretation is unfair. Sumberg and Giller (2022) investigated the 

definition and context of traditional farm farming systems. The study involved a meta-analysis of various 

literature focusing on conventional agrarian farming systems. The study concludes that the authors agree 

that productivity improvements made to traditional practices would enhance the overview of the future of 

agriculture.  

 

Alternative Farm Methods 

Tal (2018) investigated the available sustainable alternatives to traditional farm practices while 

illuminating the potentially adverse impacts of conventional methods on the environment and human health. 

The study involved the meta-analysis of 15 studies focusing on environmental sustainability. The authors 

concluded that adopting organic farming was a suitable substitute for conventional farming, admitting that 

organic farming may not be optimal. In related studies, Kazimierczak et al. (2019) defined organic farming 

as systems that solely utilize natural procedures in agriculture. Further on, they proposed the following 

alternative farming methods to mitigate the environmental challenges of conventional farming; organic 

farming systems, green evolution, and climate-smart agriculture.  

 

Climate Smart Agriculture  

Climate Smart Agriculture (CSA) is a framework that encompasses an all-inclusive system in 

agriculture centered around intentionally increasing agricultural productivity without compromising 

sustainability. Various researchers have thoroughly assessed the evolution of CSA as an alternative to 

existing farm systems, including Edward (2020). Chandra (2018) emphasized the need for a well-defined 

context of CSA without misclassifying it as precision agriculture or intelligent agriculture. The review 

highlighted the difference between the three farming systems in their approaches. While precision farming 

purely centers on improving inputs (Chandra et al., 2018), smart farming enhances the entire farming 

system, from inputs to farm products and beyond CSA (Mazetto et al., 2020). Smart agriculture, however, 

incorporates external data sources such as analysis of the weather and market trends for optimization. Thus, 

CSA is a part of Smart farming with three distinct core elements.  
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The systematic analysis of literature from 2004 to 2016 by Totin et al. (2018) revealed climate 

vulnerability and food security as the underlying themes for developing CSA models globally. 

Nevertheless, the three pillars of CSA, namely, productivity, adaptation, and mitigation, must be carefully 

integrated to achieve global food security. The conclusion of the study further revealed the limitations of 

CSA as with any other model. The constraints of CSA include the widely subjective nature of the areas 

adopted, predominantly influenced by available resources and infrastructure in the geographic location and 

the existing agrarian farm systems. The conclusion of the work further revealed the limitations of CSA as 

with any other model (Totin et al., 2018). 

 

Machine Learning in Agriculture 

The role of agriculture as the backbone of every economy shows the importance of the agriculture 

industry. Population increases have suddenly and implicitly placed considerable pressure on agricultural 

productivity to meet the demands of the current population. Modern technology is required to avert 

laborious work and increase production to address the high need for food. Current research trends indicate 

a steady surge of the research interest of the scientific research community in agricultural production and 

the application of machine learning in agriculture. The evolution of ML in scientific research studies began 

in 1995. However, applying the technique in agriculture gained popularity and highlighted an increasing 

slope between 2011 and 2019 (Muniasamy, 2020). The resultant popularity stems from the ability of ML 

to solve several challenges in agricultural operations, including growth deficiencies in fruits such as 

strawberries, pesticide management, and soil content predictability (Saleem et al., 2022; Chen et al., 2019). 

Liakos et al. (2018) present a comprehensive review of research on machine learning applications in 

agricultural production systems. Their study shows ML as a solid predictive analytical technique for 

agriculture. However, Kamilaris and PrenafetaBoldu (2018), in a comprehensive assessment of 40 studies, 

argue that deep learning provides a better potential to solve agricultural and food production challenges. 

Meshram et al. (2021) provide a detailed survey assessing the machine-learning techniques applied in 48 

independent studies. These studies combined numerous machine-learning and neural networks in different 

agricultural production stages. Pathan et al. (2020) summarize 16 studies that applied a combination of 

available agriculture intelligence such as precision farming, deep learning, image processing, deep learning, 

and convolution neural network. 

  

Benefit of Machine Learning in Agriculture 

Traditional agricultural production methods rely on prescheduled activities without implementing 

artificial intelligence. Sharma et al. (2021) define Machine learning as a technique under A.I. that utilizes 

computer systems to study, learn and adapt to patterns and instructions for statistical inference and decision-

making. The potential merit of Machine Learning (ML) in agriculture is abundant with evolving techniques 

(Elavarasan et al., 2018). Elavarasan et al. (2018) distinguished ML as a technique heavily involving vast 

amounts of data for assessment in a comparative evaluation between ML and statistical modeling utilized 

under traditional agricultural operations. The application of machine learning is prevalent in various fields, 

such as health services, transportation, finance, supply chain, and biotechnology. Researchers and analysts 

have recently incorporated it into agriculture to increase yield (Benos et al., 2021). Also, machine learning 

in agriculture is relevant to help small farmers, ranchers, and agricultural analysts strategize to meet global 

food demand. Meshram et al. (2021) summarized the main agricultural-related stages where the adoption 

of ML suited a pictorial view. The settings are pre-harvesting, harvesting, and post-harvesting. Activities 

within the preharvesting steps include soil management and monitoring. Also, the harvesting stages consist 

of crop mapping and disease detection. Finally, post-harvesting is predictive analytics of agricultural yield 

and productivity.  

Soil Management. Yang et al. (2019) perform an intrinsic assessment of four machine-learning 

approaches by sampling 523 soil samples from various parts of China to deepen the accuracy of ML 

techniques. A combination of the Nonlinear Extreme Learning Machine (ELM) coupled with a genetic 

algorithm had the best soil properties prediction accuracy for paddy soils. Suchitra and Pai (2020) applied 

ELM, an emerging ML technique, to test and classify soil pH and fertility index to enhance environmental 
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sustainability. The Model accurately classified the soil pH and yielded a 90% performance accuracy on the 

soil fertility indices. The study illuminated the improved ability of ML as a valuable tool in predictive 

analysis in agriculture. 

Disease Detection. Disease detection is one of the phenomenal applications of machine learning in 

agricultural operations. Although this area of machine learning is still underdeveloped relative to deep 

understanding, advanced studies combine machine and deep knowledge to enhance disease prediction 

accuracy. Negi et al. (2021) developed a disease detection model using multiple image datasets to categorize 

various plant diseases. The Model utilized a deep learning method for disease plant classification. Sindhu 

et al. (2021) employed ML in disease classification identification in rice plant production. 

Harvesting and Post-Harvesting. Harvesting and post-harvesting periods are very relevant stages in 

agriculture operations. In a review of ML adoption in these areas, Chlingaryan et al. (2018) discuss research 

developments within the last 15 years on machine learning-based techniques for accurate crop yield 

prediction and nitrogen status estimation. ML is proven to assist in reducing harvesting and post-harvesting 

losses through precise image classification. Fatima et al. (2020) applied several machine-learning 

techniques to four fruit image classifications to automate the sorting process during harvesting. The work 

showed that ML inbuilt color models have approximately 96% color classification accuracy. For instance, 

(Garcia et al., 2019) developed an automatic tomato ripeness identification model from 900 tomato images 

collected from farms and online sources. The tomato images represented various levels of tomato 

development. Consequentially, the automation of tomato classification was accurate using a support vector 

machine (SVM) classifier via a machine learning approach and image processing techniques. Thus, 

throughout literature and continuous research, machine learning has yielded impressive results in the 

agricultural industry. Furthermore, robust models in machine learning are being developed through constant 

research and development to cater to evolving issues in the global agricultural supply chain.  

 

METHODS AND DATA  

 

This section provides a detailed description of the theoretical framework of machine learning, the 

proposed Model, the data sets, and the data process utilized in the preliminary analysis.  

 

Machine Learning Techniques 

Machine learning (ML) constitutes utilizing computer systems to study, learn and adapt to patterns and 

instructions for statistical inference and decision-making -(Sharma et al., 2021). Simply put, it is training a 

computer to recognize repeating patterns to make classification and predictive analysis in a similar instance. 

Therefore, the key is to define the problem that will influence data collection critically. The general ML 

process can be categorized into three stages, as in figure 1 in the appendix. Data Collection and 

Preprocessing, ML algorithm, Model Selection, and Deployment are the stages.  

 

Stage One: Data Collection and Cleaning 

The first stage in the machine learning process is collecting and carefully assessing the type of data 

collected. Data Preprocessing refers to all the procedures to ensure that the data is clean. They include 

removing duplicated data and replacing missing numbers with the means. The above process combination 

is termed exploratory data analysis (EAD). The EAD is to understand the data attributes better and provide 

quick insight into the data quality. Followed closely is the undertaking of exploratory analysis. Data 

exploration creates a snapshot of data distribution and visualization, facilitating early error detection. Once 

the data is cleaned, it is ready for ML processing. The correlation among attributes is estimated to determine 

multicollinearity.  

 

Stage Two: Data Processing 

This stage involves summarizing and visualizing the cleaned dataset. At this stage, the dataset is 

segregated into two unequal parts: the test data and the train data. For instance, a dataset may be split into 

80% training and 20% testing or validation dataset. This approach is known as the train validation test split 
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approach. The idea is to train the Model with enough samples of the training datasets capable of being 

validated by the test data. This further ensures the accuracy of the Model—finally, the building and 

establishing of suitable classification models. A key advantage of ML is the versatility of the technique to 

utilize numerous models to enhance accuracy. About six known ML algorithms are usually exposed to 

datasets known as ML classifiers. They are Logistic Regression (LR), Linear Discriminant Analysis (LDA), 

K-Nearest Neighbors (KNN), Classification and Regression Trees (CART), Gaussian Naïve Bayes ( NB), 

and Support Vector Machines (SVM). 

 

Stage Three: Model Selection and Deployment 

The cross-validation method is performed for each possible Model. Thus, this stage consists of selecting 

the best Model specifically for the dataset with the highest accuracy. The K-fold validation is then used for 

model selection and deployment. Consequently, the final candidate model is used for classification or a 

predictive model. Predictions and types are evaluated, and accuracies are assessed.  

 

Proposed Model  

The traditional ML model is utilized in our preliminary analysis to yield foundational results and to 

assess the weakness that may arise from the candidate. The application of ML in agriculture is continually 

produced. Hence, ML algorithms are applied to time-series agricultural input datasets from 2015 to 2019. 

Extensive data is collected and segregated in a machine-learning module to train and test data. This process 

relies on artificial intelligence to finally reach a conclusion or rule after training and testing to improve its 

prediction accuracy. The elements are phosphorus, nitrogen, and Potassium; the average temperature 

recorded on crop exposure to sunlight; the soil pH levels; the humidity; the average Rainfall or soil 

moisture; and finally, the class label (rice, peanut, green beans, and others.).  

 

Data Curation 

Due to the limited data availability, the current data set consists of monthly data on U.S. agricultural 

inputs (Nitrogen, Phosphorus, and Potassium) and necessary production conditions for proper plant growth 

(pH, rainfall, and temperature). The preliminary information is from the USDA National Agricultural 

Statistical Service (USDA-NASS) on the top 22 crops grown in the United States from 2015 to 2019. It 

consists of eight attributes to assist in crop production recommendations for small-scale farmers. Data on 

fertilizers by nutrient ( nitrogen, phosphorus, and Potassium) is accessible from the Food and Agriculture 

Organization of the United Nations (FAOSTAT), and data on crop production is available from USDA - 

National Agricultural Statistics Service - Data and Statistics. 

Nitrogen is a vital component of amino acids that plants use for food production.  

Phosphorus is a necessary element that facilitates plant cell division and tissue formation. Also, 

Potassium is known as an element that enhances plant functionality. Knowledge of the right temperature, 

soil acidity or alkalinity level, and rainfall volume is necessary for increasing crop productivity.  

 

RESULTS  

 

While ML is applied in various aspects of agriculture, the research is focused on the preharvesting stage 

of farming hence adopting CSA practices and ML. Employing artificial intelligence techniques at the pre-

planting stage sets the tone for CSA practice. In effect, knowledge of the volume of fertilizer to be applied 

and the specific soil area to use instead of overall land area application saves time. Most importantly, it 

goes a long way to ensure that more than necessary fertilizer is not applied to the land. The adverse effect 

of the latter is the potential of the chemicals to seep down the underground water table regardless of being 

organic or inorganic. Therefore, the study focused on practical and conscious soil management practices 

using ML. 
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Data Preprocessing and Exploratory Analysis  

The dataset is investigated for any missing, null, or duplicates in the dataset. The datasets contain 2200 

observations with seven attributes and a class label. While seven are the main attributes, and the final 

column class is the label attribute. Table 1.0 in the appendix shows a detailed description of the crops 

considered in the study. All analysis and algorithms were performed in Python pandas and Numpy libraries. 

The dataset showed no missing, null, or duplicates. 

The descriptive statistics showed the average volume of fertilizer a farmer uses on 0.5-acre farmland. 

All elements (N, P K) were in pounds(lb.). Thus, the average nitrogen, phosphorus, and Potassium utilized 

were approximately 51 lb., 53lb, and 48lb, respectively. Among the three, phosphorus was applied the most, 

while Potassium was the least used. Also, to eliminate confusion, the element columns are renamed to their 

traditional names (nitrogen, phosphorus, and Potassium). The dataset is further visualized to provide 

oversight of the data distribution. Apart from temperature and pH datasets with a gaussian distribution, the 

remainder of the attributes were non-gaussian. Therefore, they were normalized to translate them to a 

normal distribution. Figure 2 shows this phenomenon.  

 

Data Processing  

Firstly, to answer the first objective stated, the ML algorithm was able to estimate and quantify the top 

five and least five crops that required any of the above fertilizers and conditions for proper growth. The 

details of this are in figure 3 below. 

The crops that required the most nitrogen were cotton, peanut, tomato, banana, and watermelon. 

Meanwhile, those that needed the least nitrogen were lentils, pomegranates, oranges, lettuce, and pigeon 

peas. Also, crops that needed significant phosphorus were apples, grapes, bananas, lentils, and chickpeas, 

and those needing the least were oranges, cucumbers, watermelons, tomatoes, and pomegranates. Similarly, 

grapes, apples, chickpeas, watermelon, and tomatoes required the most Potassium, while oranges, peppers, 

lentils, cotton, and maize required the least Potassium. For the soil conditions, we start with the pH levels; 

chickpeas, peppers, oranges, lentils, and cotton would thrive in areas with high pH levels regardless, while 

kidney beans, lettuce, pigeon peas, apple, and cucumber would suffer in a low place. Also, papaya, lettuce, 

peppers, tomato, and green beans are exposed to need the most sunlight. 

In contrast, chickpeas, kidney beans, pomegranate, maize, and apples would not survive extremely high 

temperatures. Hence, they have the least amount of sunlight. Finally, rice, cucumber, wheat, peanut, and 

pigeon peas needed the most rainfall or moisture volume. Tomato, lentils, green beans, watermelon, and 

soybeans needed the least rain.  

 

Model Selection and Deployment  

All six ML algorithms were applied to the training dataset for objective two. The train and test datasets 

were split into 80% and 20%, respectively. Carefully not to overfit the models, the accuracies, recall, f1-

score, and support for all models were recorded for selection. Details of the models results are that for the 

KNN classifier, SVC, Logistic Regression, Random Forest, and the Light Gradient Boost Model (LGBM), 

the accuracies were 97% (0.97), 98% (0.98), 97% (0.97), 99%(0.99) and 99%(0.99) respectively. Although 

the random forest and the LGBM both had the same accuracies, the selected Model was the LGBM because 

it utilizes the least memory while being extremely efficient at optimizing the learning process.  

Thus, the selected LGBM model was further trained on various samples of the training dataset. Finally, 

the Model was applied to the test dataset and accurately predicted the top 5 crops  that may be grown using 

the optimized level of all seven attributes.  

 

DISCUSSION AND FUTURE RESEARCH  

 

ML application undoubtedly has the potential to significantly reduce the challenge of overfertilization 

of soil and low crop yield. Attempt to solve these issues have resulted in traditional farming methods that 

have adversely affected the ecosystem. The research has demonstrated the ability of ML to predict the 

agricultural inputs necessary for optimal productivity accurately. In the preliminary studies, we sought to 
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identify the grey area in agriculture that ML could improve. Numerous aspects of agriculture could benefit 

from ML.  

Future works would consist of a comprehensive farm specific dataset collection from farms in North 

Carolina. As a collaborative effort between the Green Agritech Foundation, Greensboro, NC, USA, data 

collected would be analyzed, and a final predictive model would be suggested and employed by farmers on 

a pilot project geared towards enhancing food security in North Carolina.  
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APPENDIX  

 

FIGURE 1 

THE MACHINE LEARNING MODEL 
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FIGURE 2 

CORRELATION MATRIX OF ATTRIBUTES 
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FIGURE 3(A) AND (B) 

 

  
 

FIGURE 4-7 

ML ALGORITHMS, RESPECTIVELY 
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 Logistic regression  
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Link to thegoogle collaboratory document for source codes:  

https://colab.research.google.com/drive/1679dKDzzEwRCJpQuOx1b0kokgPPWxtYg#scrollTo=Dpazs78uzVz9  




