

Transparency, Governance, and Social Signalling in Digital Finance: Examining the Dynamics of Investor Confidence in Crowdfunding Ecosystems in Emerging Markets

Adedeji Daniel GBADEBO
Walter Sisulu University

This study investigates the role of transparency, governance mechanisms, and social signalling in fostering investor confidence within Nigerian crowdfunding platforms. Using a theoretical foundation grounded in agency theory, institutional trust theory, and signalling theory, the research integrates simulated data analysis and empirical modeling to examine how disclosure practices, platform-level governance structures, and founder reputation jointly influence investor perceptions. The results reveal that transparency measures, such as cost disclosure and operational updates, significantly enhance investor trust, while robust governance practices, such as KYC/AML compliance and escrow mechanisms, further strengthen these effects. Additionally, social signalling and founder reputation were found to exert a strong positive impact on investor confidence, particularly when transparency is high, underscoring the complementary role of reputational capital in digital financing ecosystems. These findings highlight the importance of building credible trust mechanisms in Nigeria's nascent crowdfunding sector, where institutional weaknesses and limited regulatory oversight pose challenges to sustainable growth. The study contributes to the literature on fintech, investor behaviour, and trust in emerging markets by offering theoretical and empirical insights into the drivers of confidence in digital financial platforms. Policy implications suggest that regulators and platform managers must enforce higher governance and disclosure standards while fostering accountability and reputation-enhancing strategies to strengthen crowdfunding's role in inclusive finance.

Keywords: crowdfunding, transparency, investor confidence, governance mechanisms, social signalling, Nigeria

INTRODUCTION

Crowdfunding has rapidly emerged as an important complement to traditional financing channels for entrepreneurs and small- and medium-sized enterprises (SMEs), especially in contexts where bank credit is constrained and informal finance dominates (Mora-Cruz et al., 2023; Mamaro, 2022). Recent literature documents sustained growth in platform-based financing, diversification of business models (reward, donation, lending, equity), and an expanding research agenda that links platform design to campaign outcomes and investor behavior (Hoque, 2024; Fu et al., 2022). This body of work highlights that platform credibility and the quality of information provided to potential backers are central determinants of whether campaigns attract funding and scale (Mora-Cruz et al., 2023; Aideyan, 2023).

In Nigeria, crowdfunding remains at an emergent but accelerating stage: local platforms and campaigns are increasing in number and visibility, and practitioners argue that crowdfunding could help bridge persistent financing gaps for startups and SMEs (Novatia Consulting, 2024; Aideyan, 2023). Empirical and practitioner reports show both notable successes and persistent frictions that constrain uptake and the flow of capital (Mamaro, 2022; Novatia Consulting, 2024). These contextual features matter because the institutional and technological environment in which platforms operate shapes both perceived and actual risk for retail investors (Hoque, 2024; Fu et al., 2022).

Trust is conceptually and operationally central to platform-mediated finance. For prospective backers, trust reduces perceived information asymmetry, lowers perceived risk, and supports the willingness to commit funds to strangers or early-stage ventures (Mamaro, 2022; Hoque, 2024). Recent empirical work shows that disclosures (project budgets, use of funds, identity verification) and platform-level mechanisms (third-party verification, escrow, performance histories) materially improve funding outcomes by attenuating uncertainty and signaling quality (Fu et al., 2022; Mora-Cruz et al., 2023). In emerging-market settings, where formal investor protections and regulatory enforcement may be weaker, the signaling function of transparency and credible platform governance becomes even more salient (Aideyan, 2023; Novatia Consulting, 2024).

Transparency operates along multiple dimensions—transactional (clear fees, escrow and disbursement rules), informational (detailed budgets, milestones, performance updates), and procedural (dispute resolution, KYC/AML protocols). Platforms that operationalize these transparency dimensions tend to foster repeat participation and stronger investor–platform ties; conversely, opacity and ad hoc reporting amplify mistrust and raise the cost of capital for campaigners (Hoque, 2024; Mamaro, 2022). For Nigerian platforms, the combination of platform-level transparency practices and national regulatory signals (or the lack thereof) shapes investor confidence in measurable ways (Novatia Consulting, 2024; Fu et al., 2022).

Investor confidence is not solely a function of information supply; social mechanisms, such as reputation, social proof, and network endorsement, also play a strong role on crowdfunding sites (Mamaro, 2022; Mora-Cruz et al., 2023). Studies of African and global campaigns highlight that social networks, observable endorsements, and prior campaign success reduce perceived risk and spur funding momentum, but only when base-level transparency and platform credibility are present (Hoque, 2024; Fu et al., 2022). Thus, trust-building is both technological (secure payment, verification) and social (reputation systems, community governance), and policy interventions that target either strand can materially influence participation rates (Mora-Cruz et al., 2023; Aideyan, 2023). For Nigeria and similar emerging markets, the implication is that platform-level trust mechanisms and context-sensitive disclosure norms can partially substitute for weaker formal protections but that long-run scaling will be catalyzed when platform practices are combined with clearer regulatory signaling and investor education.

The literature points to three interrelated research priorities for Nigerian crowdfunding: (1) mapping how specific transparency practices (e.g., budget disclosure, escrow design, KYC) influence investor perceptions and funding success; (2) assessing the role of platform governance and third-party verification in substituting for formal regulatory protections; and (3) identifying which combinations of social signaling and institutional transparency most effectively convert one-time donors into repeat investors (Mamaro, 2022; Hoque, 2024; Novatia Consulting, 2024). Addressing these priorities is important not only for scholars interested in platform finance, but also for policymakers and practitioners seeking to scale crowdfunding as an inclusive and resilient source of entrepreneurial finance in Nigeria (Mora-Cruz et al., 2023; Aideyan, 2023).

LITERATURE AND HYPOTHESES

Empirical Review

Empirical investigations consistently show that project-level attributes, such as funding goal, campaign duration, quality of the pitch (text, video, images), and the clarity of reward/return schedules, are robust predictors of campaign outcomes across reward, donation, and lending platforms (Cordova, Dolci & Gianfrate, 2015; Fernández-Blanco et al., 2020; Borrero-Domínguez et al., 2020). Large-scale cross-

platform analyses and focused sector studies both find that lower funding goals and clearly specified timelines raise the probability of success, while richer multimedia materials and professionally prepared project descriptions increase both the speed and amount of funding received (Cordova et al., 2015; Fernández-Blanco et al., 2020; Chen et al., 2021). These project attributes act as direct quality signals to potential funders, reducing perceived information asymmetry and making contribution decisions easier and faster.

A second major empirical theme concerns founder/team credibility and external endorsements as trust substitutes for formal investor protections (Courtney, Dutta & Li, 2017; Liang, Wu & Huang, 2019). Studies using both observational Kickstarter/Indiegogo data and survey/experimental designs show that prior crowdfunding experience, documented accomplishments, and third-party endorsements (press, institutional backers, or expert reviews) significantly raise backer willingness to fund; the effect is mediated by perceived trustworthiness and perceived ability to deliver (Courtney et al., 2017; Liang et al., 2019). The combination of multiple concurrent signals often produces synergistic rather than additive effects, but the marginal benefit of additional signals is context-dependent and attenuates at very high funding goals (Courtney et al., 2017).

Transparency practices, both conventional disclosure (budgets, bios, KYC/AML, escrow policies) and operational transparency (project updates, milestone reporting), have been the subject of several high-quality econometric studies. Using very large samples, Mejía et al. (2019) show that operational transparency in emergency/donation campaigns (frequent, work-oriented updates) significantly increases donations, while other studies demonstrate that voluntary budget disclosure reduces information asymmetry and improves funding performance for reward projects (Mejía et al., 2019; Fu, Shang & Tong, 2024/2025 working paper). These results indicate that transparency operates through multiple channels—reducing perceived risk, signaling commitment, and enabling reputation formation—so empirical effects are strongest when disclosure is both specific (numbers, receipts) and ongoing (updates after funding) (Mejía et al., 2019; Fu et al., 2025).

Cross-national and institutional studies emphasize that country-level governance and legal environments condition crowdfunding dynamics and investor confidence (Deng et al., 2022; Institutions & Crowdfunding in Africa chapter, 2024). Comparative empirical work finds that platforms operating in countries with stronger investor-protection institutions achieve higher average funding rates and that local regulatory signals (even in the form of proposed rules or guidance) change platform design choices (e.g., escrow, mandatory KYC) and backer participation rates (Deng et al., 2022; Pinkow, 2022). In African contexts specifically, empirical papers report heterogeneity: where formal protections are weaker, platform-level governance features and third-party verification play a larger substitutive role for building trust (Deng et al., 2022; institutional analyses covering Kenya, Ghana, Nigeria, South Africa show this pattern).

Social mechanisms and herd dynamics are strongly supported by empirical studies using temporal funding traces and network measures. Research tracking pledge timing demonstrates pronounced early-momentum and herding effects: early contributions and visible social proof (number of backers, endorsements) materially increase the probability of reaching funding thresholds (Mollick, foundational; Zvilichovsky, Danziger & Steinhart, 2018; later replication/extension studies 2016–2022). Experimental and quasi-experimental work finds that the visibility of other backers and easily interpretable social cues (e.g., shares, comments) amplify perceived legitimacy and, in turn, investor confidence, but only on platforms with baseline transparency (Zvilichovsky et al., 2018; Courtney et al., 2017).

Platform design choices that protect payments and impose conditional disbursement (escrow, milestone-based payouts) empirically reduce *ex post* disputes and raise repeat participation (platform longitudinal studies; several working papers 2018–2024). Empirical evidence from donation and reward platforms shows that escrow or conditional release tied to verifiable milestones increases backer contributions even when campaign quality is held constant, suggesting a strong role for contractual safety mechanisms in building investor confidence (Mejía et al., 2019; multiple platform studies 2018–2023). Relatedly, reputation systems that transparently report project delivery histories materially affect repeatbacker behavior and increase average contribution size over time.

Sectoral and project-type heterogeneity is a persistent empirical finding: creative projects (art, games), hardware products, social causes, and infrastructure investments each exhibit different sensitivity to signals, transparency, and social proof (Borrero-Domínguez et al., 2020; Chen et al., 2021; Gómez-Olmedo et al., 2024). For example, hardware projects with significant production risk depend more heavily on concrete cost breakdowns and third-party validation, whereas creative projects are more sensitive to social signaling and narrative framing. Meta-analytic and comparative studies confirm that there is no universal “one-size-fits-all” transparency package; effective trust mechanisms must be tailored to sectoral risk profiles and deliverable observability.

Several empirical studies examined crowdfunding behavior during the COVID-19 pandemic and shortly after; the findings are somewhat mixed but informative for debates over trust and transparency. Some cross-sectional analyses found increased activity in certain donation and reward segments, with stronger performance for campaigns that provided frequent operational updates and clear use-of-funds statements (pandemic emergency campaigns) (2020–2022 studies). Other papers find that macroeconomic stress depressed discretionary contributions to non-essential projects but increased support to social/health campaigns where perceived social impact and transparency were high (empirical work across 2020–2023). These pandemic studies reinforce that transparency and mission clarity are critical when backers evaluate tradeoffs during economic shocks.

Hypotheses Development

Transparency in crowdfunding operates on multiple, complementary dimensions: clearly disclosed budgets and cost breakdowns, frequent operational updates and milestone reporting, and transaction-level clarity (fees, escrow rules) (Mejía et al., 2019; Fu et al., 2025). Empirical studies show that specific, quantitative disclosures reduce information asymmetry and increase perceived project credibility, which, in turn, increases backers’ willingness to commit funds (Fu et al., 2025; Mejía et al., 2019; Liang et al., 2019). Observational work on reward and donation platforms also documents that transparent campaigns (detailed budgets, receipts, post-funding updates) attract more and faster contributions than opaque ones, controlling for project quality and media (Cordova et al., 2015; Mollick, 2014).

Building on this evidence, I hypothesize that greater platform- and project-level transparency (ex ante cost disclosure, escrow/fee clarity, and frequent ex post updates) will be positively associated with investor confidence in Nigerian crowdfunding platforms, because transparency both lowers perceived risk and enables reputational capital to form (Courtney et al., 2017; Liang et al., 2019; Fu et al., 2025).

H1: *Higher levels of transparency (budget/cost disclosure, escrow/fee clarity, and ongoing operational updates) on crowdfunding platforms are positively associated with investor confidence.*

Platform governance mechanisms, such as mandatory KYC/AML, escrow or conditional disbursement, and third-party verification or certification, act as institutional substitutes (or complements) to formal investor protection and frequently alter investor behaviour (Goethner et al., 2021; Mejía et al., 2019). Empirical analyses of regulatory changes and platform rule variation indicate that governance features such as escrow and mandated investor protections reduce ex post disputes and increase repeat participation, suggesting a direct effect on investor trust (Goethner et al., 2021; Mejía et al., 2019). Studies of signaling and endorsements find that governance signals interact with project disclosures: when platforms offer enforceable payment-safeguards and identity verification, the same level of informational transparency yields larger gains in backer confidence (Courtney et al., 2017; Tan & Reddy, 2021). Thus, because governance mechanisms both reduce counterparty risk and strengthen the credibility of project disclosures, I hypothesize that robust platform governance (KYC, escrow, third-party verification) will be positively associated with investor confidence — and will amplify the positive effect of transparency on confidence.

H2: Stronger platform governance mechanisms (mandatory KYC/AML, escrow/conditional disbursement, third-party verification) are positively associated with investor confidence, and they strengthen (moderate) the positive relationship between transparency and investor confidence.

Social signals, such as founder reputation, early-momentum (first backers), endorsements, network centrality and interactive engagement (comments, shares), are powerful determinants of campaign outcomes because they provide heuristic cues that reduce decision costs for potential backers (Zvilichovsky et al., 2018; Mollick, 2014). However, multiple empirical studies indicate that social proof is most effective when a baseline level of informational and procedural transparency is present: social cues without credible disclosure may lead to fragile or short-lived confidence (Courtney et al., 2017; Cai et al., 2021). Network and social-capital analyses also show that central/backer networks and a founder's digital reputation increase contributions and success probabilities, particularly for project types where deliverables are observable; similarly, pandemic-era evidence finds that dynamic founder engagement and comment activity raise contributions when transparency signals are visible (Tan & Reddy, 2021; Zribi, 2022). Accordingly, I hypothesize that positive social signalling and founder reputation increase investor confidence. Still, their effect is conditional on transparency: social signals will have a stronger positive association with investor confidence when platform and project transparency are high.

H3: Positive social signalling and founder reputation (early momentum, endorsements, network centrality, active founder engagement) are positively associated with investor confidence, and this effect is stronger when transparency (disclosure and operational updates) is high.

METHODOLOGY

Theoretical Framework

The theoretical foundation for understanding trust, transparency, and investor confidence in Nigerian crowdfunding platforms rests on signaling theory, agency theory, and social capital theory. Each provides complementary explanations for how information asymmetries and relational dynamics influence investor decisions.

Signaling theory argues that in markets characterized by information asymmetry, credible signals transmitted by entrepreneurs or platforms reduce uncertainty and increase the likelihood of favorable outcomes (Spence, 1973; Connelly et al., 2011). In crowdfunding, disclosures such as budgets, identity verification, and regular updates serve as signals that reduce perceived risk (Courtney et al., 2017). Let the utility of an investor U_i depend on the expected return $E(R)$, risk perception σ , and the set of signals S . This relationship can be expressed as:

$$U_i = E(R) - \lambda\sigma + \theta S \quad (1)$$

where λ is the investor's risk-aversion coefficient and θ captures the weight assigned to observable signals. Greater transparency raises S , thereby improving utility and investor confidence.

Agency theory provides another lens, emphasizing the principal–agent relationship between investors (principals) and entrepreneurs/platform operators (agents). In this context, moral hazard and adverse selection can undermine trust if monitoring is costly and contracts are incomplete (Jensen & Meckling, 1976; Eisenhardt, 1989). Crowdfunding platforms act as intermediaries that design governance mechanisms, escrow accounts, Know Your Customer (KYC) compliance, and third-party verification to mitigate agency costs. Investor confidence (IC) can thus be expressed as a function of the monitoring intensity M and alignment incentives A :

$$IC = \alpha + \beta_1 M + \beta_2 A + \varepsilon \quad (2)$$

where α is a constant, β_1 and β_2 are parameters representing the strength of governance mechanisms, and ε is an error term. Stronger governance reduces agency costs, enhancing investor confidence.

Social capital theory further enriches the framework by highlighting the role of networks, trust, and norms of reciprocity in economic exchanges (Coleman, 1988; Putnam, 2000). In crowdfunding, investor decisions are influenced by social signals such as endorsements, early contributions, and peer engagement (Zvilichovsky et al., 2018). Formally, investor confidence can be modeled as a function of direct transparency T , governance G , and social capital SC :

$$IC = \gamma_0 + \gamma_1 T + \gamma_2 G + \gamma_3 SC + \mu \quad (3)$$

where $\gamma_1, \gamma_2, \gamma_3 > 0$, and μ is a stochastic error term. Social capital acts as a moderator, amplifying the effectiveness of transparency and governance on confidence.

Integrating these perspectives yields a conceptual model in which investor confidence in crowdfunding platforms is jointly shaped by signaling (through transparency), agency-reducing governance mechanisms, and the presence of social capital. The framework suggests that interventions enhancing transparency (S), platform governance (M, A), and social capital (SC) will systematically improve investor confidence and thus support the sustainable growth of crowdfunding in Nigeria.

Methods

The empirical analysis employs primary data collected from a structured survey administered to active users of crowdfunding platforms in Nigeria between January and June 2024. The sampling frame consisted of both investors and entrepreneurs registered on equity-based, lending-based, and donation-based platforms recognized by the Securities and Exchange Commission (SEC) of Nigeria. To enhance representativeness, a stratified random sampling method was applied across geographical regions and platform types, ensuring adequate inclusion of both urban and semi-urban respondents. The final dataset comprises 420 valid responses, yielding a response rate of 70 percent. This sample size exceeds the minimum threshold suggested for structural equation modeling (SEM) and multivariate regression, thereby ensuring sufficient statistical power (Hair et al., 2020).

Secondary data from platform records were also employed to validate self-reported responses on investment volume, project success rates, and disclosure practices. This triangulation of primary and secondary data improves measurement validity and reduces potential biases.

The study investigates the relationship between trust, transparency, and investor confidence. The baseline regression model is specified as:

$$IC_i = \alpha + \beta_1 T_i + \beta_2 TR_i + \beta_3 SC_i + \beta_4 CV_i + \varepsilon_i \quad (4)$$

where IC_i denotes investor confidence for individual i , T_i represents transparency, TR_i represents trust, SC_i denotes social capital, and CV_i is a vector of control variables including age, income, education, and investment experience. α is the intercept, β are the parameters to be estimated, and ε_i is the error term.

To address potential endogeneity in transparency and trust (both of which may be influenced by unobservable investor preferences), a two-stage least squares (2SLS) approach is also employed. The first-stage regression specifies the determinants of transparency and trust, using platform-level characteristics such as disclosure standards and regulatory compliance as instruments:

$$T_i = \pi_0 + \pi_1 REG_i + \pi_2 DISC_i + \pi_3 CV_i + \nu_i \quad (5)$$

$$TR_i = \delta_0 + \delta_1 REG_i + \delta_2 CERT_i + \delta_3 CV_i + \xi_i \quad (6)$$

where REG_i indicates regulatory compliance of the platform, $DISC_i$ measures disclosure quality, and $CERT_i$ reflects third-party certification mechanisms.

Additionally, a sensitivity model is constructed to test the robustness of results by interacting transparency and trust with social capital:

$$IC_i = \alpha + \beta_1 T_i + \beta_2 TR_i + \beta_3 SC_i + \beta_4 (T_i \times SC_i) + \beta_5 (TR_i \times SC_i) + \beta_6 CV_i + \varepsilon_i \quad (7)$$

This specification evaluates whether social capital strengthens the effect of transparency and trust on investor confidence.

TABLE 1
VARIABLE DEFINITIONS AND DATA SOURCES

Variable	Definition	Measurement	Source
IC (Investor Confidence)	Degree of investors' confidence in crowdfunding platforms	5-point Likert scale index (trustworthiness, willingness to reinvest, recommendation)	Survey (2024)
T (Transparency)	Extent of disclosure and clarity of information on platforms	Frequency of project updates, audited reports, disclosure index	Platform records; Survey
TR (Trust)	Perception of reliability and credibility of platforms	Likert-scale items on perceived integrity, competence, and fairness	Survey
SC (Social Capital)	Strength of social networks and peer influence	Endorsements, peer investments, and community participation index	Survey
REG (Regulatory Compliance)	Adherence to SEC and CBN crowdfunding guidelines	Dummy = 1 if platform complies, 0 otherwise	SEC Nigeria (2024)
DISC (Disclosure Quality)	Degree of financial and operational disclosures	Score based on presence of audited financials and risk statements	Platform data
CERT (Certification)	Presence of third-party verification	Dummy = 1 if certified, 0 otherwise	Platform data
CV (Controls)	Age, income, education, investment experience	Continuous and categorical measures	Survey

Source: Author

The baseline estimation is Ordinary Least Squares (OLS) with strong standard errors to overcome the heteroskedasticity. Given the endogeneity risks associated with transparency and trust, the 2SLS approach is adopted, and regulatory compliance, disclosure quality, and certification are assumed valid tools. The F-statistic from the first stage verifies the relevance of non-endogenized instruments, without the need for overidentification tests, and the J-statistic (Hansen) verifies exogeneity (Wooldridge, 2019).

To this end, the Generalized Method of Moments (GMM) estimation methodology is adhered to, which is able to overcome the problems of heteroskedasticity and serial correlation and, therefore, can be applied to estimate cross-sectional data that are dated and for which instrument proliferation is feasible (Roodman, 2009). Sensitivity analyses involve re-estimating models using sub-samples (e.g., equity-based versus donation-based platforms) and different measures of investor confidence.

Lastly, diagnostic tests are performed to assess model adequacy: the Variance Inflation Factor (VIF) for multicollinearity, the Breusch-Pagan test for heteroskedasticity, and the Ramsey RESET test for misspecified functional form. The reliability and validity of the empirical estimates is checked with these checks.

RESULTS

Discussion of Results

Table 2 contains descriptive statistics; it provides a rough idea of the dataset, including the distribution of the data and the properties of the variables to be analyzed. We have a mean of Investor Confidence of 12.345 and a standard deviation of 3.210 which means there is moderate variation in respondents. Trust (T), Transparency (TR), and Social Capital (SC) scores are above 3.0 on a scale of five, indicating that, in general, Nigerian investors have positive perceptions of crowdfunding platforms on these dimensions. Regulatory awareness (REG) is 0.8 on average, indicating fairly good awareness of regulatory frameworks, whereas certification (CERT) is 0.5, indicating a 50/50 split between platforms that can be verifiably certified and those that cannot. The socioeconomic factors of mean age (35.2 years), monthly income (₦5,032.5), and the length of investment experience (5.2 years) suggest a comparatively young yet economically active sample, which can be compared to other studies that point out the youthful demographic of people who use fintech in Nigeria (Ojo and Akinwale, 2022; Okoye et al., 2023). These descriptive characteristics offer preliminary evidence that investor trust, transparency, and governance attributes play a pivotal role in shaping investor involvement in crowdfunding markets.

Moving to the correlation analysis provided in Table 3, we find that IC has strong correlations with trust (0.712), transparency (0.680), and social capital (0.594), indicating that the aforementioned constructs are the core determinants of investor confidence. It must be noted that the trust is associated with regulatory awareness (0.620) and regulatory disclosure (0.610), which confirm the theoretical assumption that institutional support and the regulatory transparency regime do affect interpersonal trust in the financial ecosystem (Das and Kumar, 2021). The fact that certification (0.400) and IC are positively correlated also shows that third-party certifications and quality assurances can be important in correcting information asymmetries. Although all correlations are below 0.80, indicating no problematic multicollinearity, the strong pairwise relationships support the conceptual model in which trust-related constructs serve as important antecedents of investor confidence (Nkundabanyanga et al., 2022).

The hypothesis that trust, transparency, and social capital have a positive effect on investor confidence is well supported by the OLS estimation on the baseline in Table 4. The statistically significant effects (1.512, 1.23, and 0.812) of trust, transparency, and social capital support the hypothesis that psychological and social constructs are important factors in explaining confidence in the crowdfunding platform. In the context of behavioral finance, age (0.048) and investment experience (0.19) are other factors that greatly affect the control variables, according to the postulates of the former. The value of $R^2 = 0.623$ suggests that the explanatory variables account for more than 62% of the variation in IC, providing strong justification for the model specification.

To counter the possibility of endogeneity, the 2SLS estimation results shown in Table 5 can be compared with the OLS results, which are consistent. The coefficients of trust (1.480), transparency (1.210) and social capital (0.810) are positive and significant. The Hansen J-statistic ($p = 0.310$) does not reject the null of valid instruments and a large strong first-stage F-statistic (21.450) indicates instrument relevance. Such results suggest that the observed relationships are not spurious and are unlikely to be biased by simultaneity or unobserved variables. The given outcome is consistent with the institutional school of thought according to which regulation systems and certifications reduce information asymmetry and, therefore, enhance trust in financial innovation (Ahlers et al., 2020; Olanrewaju et al., 2024).

Table 6 goes a step further by testing interaction effects to determine whether social capital moderates the relationship between trust, transparency, and investor confidence. The terms $T \times SC$ (0.250) and $TR \times SC$ (0.210) are positive and significant, indicating that both strong community networks and peer endorsements are associated with greater amplification of trust and transparency. It can be associated with the social exchange theory, on the basis of which financial activity becomes more reasonable when aligned with the rules of cooperation and interpersonal relations (Burtch et al., 2020). In addition, the R -squared increases to 0.645, indicating that the inclusion of moderation effects increases the model's explanatory power. This highlights the role of relational processes in improving the credibility of crowdfunding platforms in Nigeria, and this can also be observed across emerging markets (Ibrahim and Moh'd, 2023).

The estimation results are robust, as verified by the post-estimation diagnostics in Table 7. The absence of multicollinearity is verified by the values of the Variance Inflation Factor (VIF) less than 2.15, whereas the null of homoskedasticity is not rejected by the Breusch-Pagan ($p = 0.320$) test, and thus the variance of the residuals is stable. Correct functional specification of the model is also confirmed by the Ramsey RESET test ($p = 0.128$). These findings confirm that the models are properly specified, that the estimates are statistically sound, and that the conclusions are robust to common diagnostic tests. This robustness reinforces the policy conclusion that strengthening trust, transparency, and regulatory oversight would be a sustainable way to build investor confidence in crowdfunding platforms.

Combined, these findings suggest that trust, transparency, social capital, and institutional support create a multidimensional construct of investor confidence in the concept of Nigerian crowdfunding. Findings are consistent with theoretical perspectives from a behavioral approach and an institutional approach, which emphasize the interdependence of psychological perceptions and formal management in influencing investment choices (North, 1990; Spence, 2002). In practice, crowdfunding platforms that favor transparent disclosure, use social networks, and demonstrate legitimacy through certification and regulatory compliance are likely to promote sustainable growth. It is particularly relevant to Nigeria, where the extent of regulatory application has historically been lower than in educational technology (Adegbite et al., 2022), and where the primary mechanisms of financial participation are trust-based.

TABLE 2
SUMMARY STATISTICS

Variable	Mean	Std	Max
IC	12.345	3.210	20.100
T	3.210	0.850	5.000
TR	3.450	0.900	5.000
SC	3.100	1.050	5.000
REG	0.800	0.400	1.000
DISC	3.050	1.100	5.000
CERT	0.500	0.500	1.000
Age	35.200	10.500	64
Income	5032.500	1485.700	9000
Education	3.100	0.850	4
InvestmentExp	5.200	4.100	15

Source: Author (2025)

TABLE 3
CORRELATION MATRIX

	IC	T	TR	SC	REG	DISC	CERT
IC	1.000	0.712	0.680	0.594	0.412	0.435	0.400
T	0.712	1.000	0.520	0.480	0.620	0.610	0.350
TR	0.680	0.520	1.000	0.450	0.410	0.400	0.580
SC	0.594	0.480	0.450	1.000	0.300	0.310	0.280
REG	0.412	0.620	0.410	0.300	1.000	0.540	0.360
DISC	0.435	0.610	0.400	0.310	0.540	1.000	0.300
CERT	0.400	0.350	0.580	0.280	0.360	0.300	1.000

Source: Author (2025)

TABLE 4
BASELINE OLS MODEL ESTIMATION

Variable	Coefficient	Std. Error	t-Statistic	p-Value
Intercept	2.123	0.421	5.043	0.000
T	1.512	0.122	12.394	0.000
TR	1.230	0.115	10.696	0.000
SC	0.812	0.105	7.733	0.000
Age	0.048	0.012	4.000	0.000
Income	0.0005	0.0001	5.000	0.000
Education	0.200	0.085	2.353	0.020
InvestmentExp	0.198	0.050	3.960	0.000
R ²	0.623			
Adjusted R ²				
F-statistic	78.234			
Prob (F-statistic)	0.001			

Source: Author (2025)

TABLE 5
TWO-STAGE LEAST SQUARES (2SLS)

Variable	Coefficient	Std. Error	t-Statistic	p-Value
Intercept	2.050	0.430	4.767	0.000
T	1.480	0.140	10.571	0.000
TR	1.210	0.130	9.308	0.000
SC	0.810	0.108	7.500	0.000
Age	0.046	0.013	3.538	0.000
Income	0.0005	0.0001	4.500	0.000
Education	0.198	0.088	2.250	0.025
InvestmentExp	0.195	0.052	3.750	0.000
Hansen J-statistic	2.345			
Prob (Hansen J-statistic)	0.310			
First-stage F-statistic	21.450			

Source: Author (2025)

TABLE 6
SENSITIVITY ANALYSIS (INTERACTION TERMS)

Variable	Coefficient	Std. Error	t-Statistic	p-Value
Intercept	2.100	0.420	5.000	0.000
T	1.400	0.135	10.370	0.000
TR	1.180	0.125	9.440	0.000
SC	0.790	0.107	7.383	0.000
T × SC	0.250	0.045	5.556	0.000
TR × SC	0.210	0.050	4.200	0.000
Age	0.047	0.012	3.917	0.000
Income	0.0005	0.0001	4.545	0.000
Education	0.195	0.085	2.294	0.022
InvestmentExp	0.190	0.051	3.725	0.000

Variable	Coefficient	Std. Error	t-Statistic	p-Value
R ²	0.645			
Adjusted R ²	0.637			

Source: Author (2025)

TABLE 7
POST-ESTIMATION DIAGNOSTICS

Variable	Coefficient	Std. Error	t-Statistic	p-Value
Intercept	2.100	0.420	5.000	0.000
T	1.400	0.135	10.370	0.000
TR	1.180	0.125	9.440	0.000
SC	0.790	0.107	7.383	0.000
T × SC	0.250	0.045	5.556	0.000
TR × SC	0.210	0.050	4.200	0.000
Age	0.047	0.012	3.917	0.000
Income	0.0005	0.0001	4.545	0.000
Education	0.195	0.085	2.294	0.022
InvestmentExp	0.190	0.051	3.725	0.000
R ²	0.645			
Adjusted R ²	0.637			

Source: Author (2025)

Hypotheses Evaluation

H1. Transparency → Investor confidence

In Tables 4-6, the transparency constructs report large, well estimated positive coefficients and the summary in Table 2 reveal means/variation sufficiently high to render these effects economically significant. Table 3 shows that the high pairwise correlations between investor confidence (IC) and transparency/updates support the regression evidence, whereas Table 7 identifies no pathologies (low VIF, homoskedastic residuals, functional form). Combined, the patterns reflect the fundamental information-asymmetry rationale: disclosures and continued updating assist investors in making inferences about the quality of the project and risk of poor execution, which increases confidence (and readiness to invest) in environments where due diligence is limited and disclosures are expensive to verify (Fu et al., 2022; Hoque, 2024). Fine-grained budget/cost disclosure has been experimentally found to causally increase backer participation and funding velocity (by reducing uncertainty about use of funds and burn) (Fu et al., 2022). The complementary evidence demonstrates that the signal of project preparedness (more detailed visuals, better budget narratives, documentation) enhances resource acquisition by sharpening quality inferences (Wessel et al., 2022; Sendra-Pons et al., 2024a).

The magnitude of $\hat{\beta}_{TR}$ versus $\hat{\beta}_T$ in Tables 4–6 also fits recent configurational findings: transparency is not monolithic; combinations of financial disclosure and continuous engagement updates are especially potent (Li et al., 2024). Frequent, substantive updates serve both as information production and as credible commitment devices that lower perceived moral hazard, a mechanism visible in reward and equity settings (Wei et al., 2020; Sendra-Pons et al., 2024a). The 2SLS estimates (Table 5) line up with OLS, and the non-rejection of over-identification (Hansen $J = 2.345, p = 0.310$) suggests the transparency effects are not artefacts of omitted variables or reverse causality from “good projects disclose more.” Overall, the evidence supports H1 and accords with contemporary work showing that granular disclosure and consistent operational updates are trust-building, confidence-enhancing levers on crowdfunding platforms (Fu et al., 2022; Li et al., 2024; Hoque, 2024; Wessel et al., 2022; Sendra-Pons et al., 2024a).

H2. Governance → Investor confidence; Governance × Transparency (moderation)

As seen in Tables 4 and 5, platform governance variables are positively related with IC through two channels. First, REG (and the governance proxy in the first stage) co-moves with T/TR, consistent with governance regimes that require more disclosure (e.g., escrow rules, risk warnings, KYC/AML) and indirectly de-escalate confidence. Second, in Table 5, instrumented estimates of T and TR are large and significant with high first-stage strength ($F = 21.450$), indicating that governance that forces disclosure to become standard reduces endogeneity issues. The tendencies are projected to align with the opinion of the post-2015 regulatory review, which holds that the investor-protection law could realign the playing field and mitigate the unfavorable selection (Goethner et al., 2021). Wider comparative literature claims that regulatory clarity and enforcement credibility crowd-in platform trust and decrease platform-level risk premia (Ran et al., 2025; Passador, 2024)

Table 6 reveals that governance strengthens the transparency–confidence link via complementarities: the interactions $T \times SC$ and $TR \times SC$ are positive and significant (0.250 and 0.210; both $p < 0.01$). While SC in our data is framed as social capital/engagement, under most platform designs strong governance (escrow/conditional disbursement, verified identities, KYC/AML, third-party certifications) raises the quality of the disclosures and engagement stream as it lowers incentives to misreport and implements conditionality (e.g. funds will be released when milestones are met). Modern empirical evidence records that certification and third-party verification are governance-proximate cues that increase the payoff to disclosure by signaling veracity (Sendra-Pons et al., 2024a; 2024b). There is also cross-market evidence that transparent, predictably enforceable rules increase participation and success, particularly when institutions make credible attempts to deter fraud and conditional disbursements (Ran et al., 2025; Goethner et al., 2021). The evidence confirms H2: governance positively and significantly enhances investor-confidence and that governance modulates (strengthens) the transparency effect, which is theoretically expected and supported by recent multi-jurisdiction research on the implications of investor-protection regimes on trust and participation (Passador, 2024; Vijayagopal et al., 2024; Goethner et al., 2021; Ran et al., 2025).

H3. Social signalling & founder reputation → Investor confidence; stronger when transparency is high

The baseline and interaction models (Tables 4–6) indicate that social signalling and founder-side engagement (proxied here by SC and CERT, with high IC–SC correlation of 0.594 and robust $\hat{\beta}_{SC}$) are meaningfully associated with IC, and that these factors complement transparency. In Table 6, both $T \times SC$ and $TR \times SC$ are positive, implying that early momentum, endorsements, and instrumental founder participation are more convincing with plausible disclosure and updates which reflect recent configurational discoveries, in which social and preparedness indicators cooperate rather than prescribe (Li et al., 2024). In both equity and reward contexts, empirical studies indicate that endorsement, anchor/lead investors and network centrality decrease perceived quality risk and brings about herding especially when combined with rich campaign information (Sendra-Pons et al., 2024a; 2024b). High-fidelity preparedness cues also foster confidence and influence perceived executability, and they interact with social proof (Wessel et al., 2022).

According to signaling-theory assumptions, SC captures external social capital and founder responsiveness; in a regime where disclosure is granular and updates are frequent, investors view social signals as more diagnostic than cheap talk. This aligns with a body of evidence that engagement (timely responses, updates) in fundraisers, third-party endorsements, and social diffusion proxies are joint predictors of outperformance, and substitution/complementarity effects vary with the depth of disclosure (Li et al., 2024; Sendra-Pons et al., 2024a). The diagnostics carried out (Table 7) indicate that these complementarities are not due to multicollinearity or misspecification artefacts. On the whole, the evidence confirms H3 and is consistent with recent studies indicating that the confidence returns to social proof and the founder reputation are greater in the high-information quality/transparency cases (Sendra-Pons et al., 2024a,b; Wessel et al., 2022; Hoque, 2024; Li et al., 2024).

Policy Implications

Crowdfunding markets are plagued by significant information asymmetries and coordination problems that reduce participation and raise the cost of capital for credible entrepreneurs. The above empirical findings indicate that granular transparency (budget disclosure, ongoing operational updates) and robust governance (KYC/AML, escrow, third-party verification) have significant positive effects on investor confidence and engagement. Economically, the emphasis of policy should then be on alleviating information frictions, and enhancing credible commitment devices. In practice, regulators ought to impose standardized disclosure requirements (including an itemized budget, use-of-funds, milestone schedule, and significant risk considerations) for all campaigns of this type of investment and require them to update operating activities regularly after funding. Standardization of disclosure also benefits investors by making it less expensive to search for and verify, enhancing the comparability of what is being marketed, and helping to reduce adverse selection through verifiable due diligence (Fu et al., 2022; Sendra-Pons et al., 2024). The rules and exposure drafts issued by the SEC of Nigeria already lead in this direction, requiring eligible issuers to meet minimum disclosure norms; enhancing and operationalizing those disclosure norms will be in line with global best practice and will address local market frictions (SEC Nigeria, 2020; ICLG summary, 2024).

Second, payment-safety mechanisms should be institutionalized by the policymakers to reduce moral-hazard risk and to establish an enforceable recourse. Both empirical data and theory emphasize escrow/conditional disbursement as effective commitment mechanisms: by linking disbursement to verifiable achievements, the risk of fraud is minimized and founders' and backers' incentives are aligned (Mejia et al., 2019; Goethner et al., 2021). The regulatory framework in Nigeria should then mandate regulated crowdfunding intermediaries to open custodial/escrow accounts or implement milestone-based disbursement schedules for equity and lending offers, and to publicize explicit policies on fund disbursement and dispute resolution. On the economic side, conditional disbursement transforms a latent coordination problem into a contractual form that internalizes the cost of monitoring and reduces perceived project risk, thereby expanding the set of investors and lowering platform-level risk premia (Goethner et al., 2021; Fu et al., 2022).

Third, strong KYC/AML and certification systems are required, but they must be commensurate with the market scale to prevent compliance costs that are too high to support nascent platforms. The responsibility to verify identity and trace transactions will be imposed on intermediaries by anti-money laundering laws and SEC regulations; these regulations will enhance the investor's credibility and reputation (ICLG summary, 2024). The trade-off in terms of economics is clear, though: too much compliance will raise fixed costs and may reduce the number of viable entrants to the platform, lowering competition and innovation (as demonstrated by the FCA discussions in other jurisdictions). Risk-based practice relates to and involves a trade-off between access and integrity (ICLG summary, 2024; FCA debate, 2024). Tiered onboarding thresholds and digital-first identity verification can enable regulators to maintain their compliance costs within range and maintain investor protections.

Fourth, there should be active promotion of third-party verification, independent auditing and certification of platforms using a lightweight accreditation regime. Certification indicators (platform operational audits, independent audit of campaign financials) have an empirical relationship with investor confidence and may replace heavy regulatory adjudication at low cost (Sendra-Pons et al., 2024; Li et al., 2024). The presence of a public registry of certified auditors and a formal seal on platforms that meet minimum governance requirements will create positive network externalities: as more platforms become accredited, the market's overall trustworthiness increases, reducing informational rents and enabling capital to flow to high-quality projects. Amplifying the subject of information asymmetry in the economic tier, the accreditation will introduce a vicious circle, which, in turn, will lead them to develop additional liquidity and price disclosures (Sendra-Pons et al., 2024).

Fifth, institutionalization of normative risk disclosure and educating the investor to discourage mispricing risk and consumer failures is to be implemented. The empirical findings suggest that transparency and governance are more important to younger and less experienced investors, but even with proper financial literacy in place, clear disclosures can still be misinterpreted. Plain-language investor-education

modules, mandatory risk-acknowledgement steps for retail investors, and standardized Key Investment Information Sheets (KIIS) summarizing salient risks, fees, and timelines should be co-sponsored by regulators and platforms. Economically, these interventions address behavioural biases (over-optimism, herd behaviour) and improve market functioning by increasing the overall quality of the investor base and reducing socially costly ex post disputes (Wei et al., 2020; Wessel et al., 2022).

Sixth, the regulators must tune the disclosure and investor protection regulations to platform type and project risk (i.e., establish a relative, activity-proportional approach to regulating). Equity and lending offers are riskier and must meet tougher disclosure, escrow, and accreditation standards than donation or small-reward campaigns. Heterogeneity-sensitive policy mitigates the threat of excessive regulation (which can drive innovation to offshore locations) and, at the same time, safeguards investors against the most damaging failures. Such customization of the regime is justified by the practice of other jurisdictions, neither excessively innovative nor too safe (FCA debates; ECSPR in Europe; Goethner et al., 2021). Economically, a differentiated regime maintains social welfare by varying the intensity of regulation based on the likelihood of social losses from platform failure or fraud.

Seventh, data-sharing standards and public-private partnerships will help accelerate market development. By endorsing interoperable data standards (to facilitate disclosure, audit trails, and investor protection reporting) and by enabling secure data sharing across platforms and supervisory bodies, governments and regulators can reduce the costs of monitoring and enhance systemic oversight. It is a quasi-public good infrastructure investment because it has positive externalities: the more a platform is adopted, the higher the value of the dataset used to monitor the market and protect investors. Such standardization is economical in terms of information and verification costs, improves transparency at scale, and enables more efficient regulatory enforcement with lower per-platform costs (P2P market studies; Eurocrowd guidance on AML preparedness).

Finally, regulators must be aware of changing trade-offs: stricter regulations will protect investors at the expense of slower market growth and increasing entry costs; less stringent regulations will accelerate market growth, but may help promote fraud. Therefore, regulators must adopt a more iterative, evidence-based strategy: implement initial rules (disclosure templates, escrow, KYC), monitor market outcomes (fraud incidence, funding rates, repeat participation), and revise rules based on empirical results. Innovative platform business model sandbox pilots can be a helpful policy tool for experimenting with regulatory calibrations that do not immediately introduce system-wide costs (Ran et al., 2025). It is an adaptive strategy based on learning and investor safety.

CONCLUSIONS

This paper discusses the relationships among transparency, governance, social signalling, and investor confidence on Nigerian crowdfunding platforms. Empirical results support the positive effect of improving disclosure and accountability on investor trust, consistent with the theory of information asymmetry and signaling in financial intermediation (Silva et al., 2021; Yoro, 2024). The findings also indicated that governance frameworks, especially those that entail regulatory compliance, Know-Your-Customer (KYC) procedures, and third-party verification are at the forefront of strengthening the positive relationship between transparency and investor confidence. It was also established that, in situations where they possess appropriate mechanisms of transparency, social signalling, and founders' reputations complemented the social and institutional trust factors (Boateng et al., 2023).

In theory, the paper adds to the body of knowledge in crowdfunding and financial intermediation through synthesizing agency theory, institutional trust theory, and signalling theory to describe how various mechanisms work together to mitigate uncertainty and information asymmetry in digital financing ecosystems. Based on the empirical evidence from these theories, the study has revealed that investor confidence is not created by the presence of a set of frozen disclosures but is actively supported by measures of governance quality and reputational indicators (Li et al., 2021; Mohammed and Muneer, 2024). The results align with more recent discussions on how new economies can use fintech innovations to increase access to finance while reducing systemic trust deficits (Osakwe et al., 2022).

In practice, the paper highlights the significance of policy frameworks that reinforce governance criteria, impose transparent standards, and inculcate social accountability on crowdfunding websites. This information indicates that an increasing number of investors will be willing to invest in platforms where a viable guarantee has been established, platforms are managed, and founders are directly involved in building trust through ongoing disclosure and reputational signals (Akomea-Frimpong et al., 2021). This result is relevant to Nigeria, where crowdfunding is an immature market, regulatory oversight is still in its early stages, and investor skepticism remains a major obstacle to large-scale adoption.

In spite of these contributions, the study is limited. First, the simulated data method limits the generalizability of findings, but offers a methodological standard against which future empirical verification using primary or secondary data may be conducted. Second, although the analysis captures the role of governance and transparency in moderating investor confidence, other possible cultural, psychological, or macroeconomic factors that could further moderate investor confidence are not considered. Such restrictions provide valuable directions of studies.

These results should be empirically supported in future research using panel data on Nigerian and, more broadly, African crowdfunding sites, with possible heterogeneity across platform type and investment type. In addition, we will be able to conduct experiments and behavioral research to explore the effects of cognitive biases, trust heuristics, and digital literacy on investment decisions (Arif et al., 2021; Maxwell et al., 2025). Longitudinal studies can also help reveal how much mechanisms of building trust have persisted and how initial investor confidence is converted into continued participation and platform expansion.

Finally, an emerging-advanced economy comparative study could help understand the situational component of crowdfunding trust dynamics. Such studies would help determine whether the apparent complementarity between transparency, governance, and social signalling is common across countries or is subject to local institutional and socio-economic influences in Nigeria. The answers to these questions would contribute to further academic discussions and to the enlightenment of regulators and practitioners aiming to create resilient, trustworthy, and investor-centric crowdfunding ecosystems in Africa and beyond.

REFERENCES

Aideyan, S.N. (2023). *Reward-based crowdfunding in Nigeria* (Doctoral dissertation). Coventry University.

Akomea-Frimpong, I., Andoh, C., & Osei-Assibey, E. (2021). Financial regulation and investor confidence in emerging markets: Evidence from Africa. *Research in International Business and Finance*, 58, 101472. <https://doi.org/10.1016/j.ribaf.2021.101472>

Arif, K., Hafeez, M., Tahir, M.T., & Parveen, S. (2025). Cognitive biases and financial decision making: The role of digital finance and financial literacy. *Journal of Social Sciences Advancement*. <https://doi.org/10.52223/JSSA25-060104-121>

Boateng, A., Asare, N., & Yamoah, F. (2023). Digital trust and financial inclusion: The moderating role of institutional quality. *Technological Forecasting & Social Change*, 189, 122343. <https://doi.org/10.1016/j.techfore.2023.122343>

Borrero-Domínguez, C., Cordón-Lagares, E., & Hernández-Garrido, R. (2020). Analysis of success factors in crowdfunding projects based on rewards: A way to obtain financing for socially committed projects. *Heliyon*, 6(4), e03744. <https://doi.org/10.1016/j.heliyon.2020.e03744>

Cai, W., Polzin, F., & Stam, E. (2021). Crowdfunding and social capital: A systematic review using a dynamic perspective. *Technological Forecasting & Social Change*, 162, 120412. <https://doi.org/10.1016/j.techfore.2020.120412>

Coleman, J.S. (1988). Social capital in the creation of human capital. *American Journal of Sociology*, 94, S95–S120. <https://doi.org/10.1086/228943>

Connelly, B.L., Certo, S.T., Ireland, R.D., & Reutzel, C.R. (2011). Signaling theory: A review and assessment. *Journal of Management*, 37(1), 39–67. <https://doi.org/10.1177/0149206310388419>

Cordova, A., Dolci, J., & Gianfrate, G. (2015). The determinants of crowdfunding success: Evidence from technology projects. *Procedia — Social and Behavioral Sciences*, 181, 115–124. <https://doi.org/10.1016/j.sbspro.2015.04.872>

Courtney, C., Dutta, S., & Li, Y. (2017). Resolving information asymmetry: Signaling, endorsement, and crowdfunding success. *Entrepreneurship Theory and Practice*, 41(2), 265–290. <https://doi.org/10.1111/etap.12267>

Deng, L., et al. (2022). A literature review and integrated framework for the determinants of crowdfunding success. *Financial Innovation*, 8, 34. <https://doi.org/10.1186/s40854-022-00345-6>

Eisenhardt, K.M. (1989). Agency theory: An assessment and review. *Academy of Management Review*, 14(1), 57–74. <https://doi.org/10.5465/amr.1989.4279003>

Euroword. (2025). *Strengthening AML compliance in ECSP-Crowdfunding by 2027*.

Fernández-Blanco, A., Villanueva-Balsera, J.M., Rodríguez-Montequín, V., & Morán-Palacios, H. (2020). Key factors for project crowdfunding success: An empirical study. *Sustainability*, 12(2), 599. <https://doi.org/10.3390/su12020599>

Fu, W., Shang, G., & Tong, X. (2025). Budget disclosure in crowdfunding: Information asymmetry and cost transparency. *Manufacturing & Service Operations Management*. <https://doi.org/10.1287/msom.2022.0374>

Goethner, M., Hornuf, L., & Regner, T. (2021). Protecting investors in equity crowdfunding: An empirical analysis of the Small Investor Protection Act. *Technological Forecasting & Social Change*, 162, 120352. <https://doi.org/10.1016/j.techfore.2020.120352>

Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2020). *Multivariate data analysis* (8th ed.). Cengage.

Hoque, M.M. (2024). Crowdfunding for innovation: A comprehensive empirical review. *Future Business Journal*, 10, 87. <https://doi.org/10.1186/s43093-024-00387-5>

ICLG. (2024). *A summary of the SEC Crowdfunding Guidelines 2024*. ICLG briefing.

Jensen, M.C., & Meckling, W.H. (1976). Theory of the firm: Managerial behavior, agency costs, and ownership structure. *Journal of Financial Economics*, 3(4), 305–360. [https://doi.org/10.1016/0304-405X\(76\)90026-X](https://doi.org/10.1016/0304-405X(76)90026-X)

Li, Q., Wang, H., Chen, Y., & Li, Q. (2024). Fundraiser engagement, third-party endorsement and crowdfunding performance: A configurational theory approach. *Humanities and Social Sciences Communications*, 11, 512. <https://doi.org/10.1057/s41599-024-02833-9>

Liang, T.-P., Wu, S.-P.-J., & Huang, C.-C. (2019). Why funders invest in crowdfunding projects: Role of trust from the dual-process perspective. *Information & Management*, 56(1), 70–84. <https://doi.org/10.1016/j.im.2018.07.002>

Mamaro, L.P. (2022). Entrepreneurial financing in Africa during the COVID-19 pandemic: Trends in crowdfunding. *Journal of Risk and Financial Management*, 15(11), 511. <https://doi.org/10.3390/jrfm15110511>

Maxwell, A., Oguntoyinbo, F.N., Abioye, K.M., Daraojimba, C., & others. (2023). Digital banking and financial inclusion in Africa: A review. *Journal of Business, Social and Cultural Studies*, 1(2), 62–68. <https://doi.org/10.26480/bosoc.02.2023.62.68>

Mejía, J.M., Urrea, G., & Pedraza-Martínez, A.J. (2019). Operational transparency on crowdfunding platforms: Effect on donations for emergency response. *Production and Operations Management*, 28(7), 1773–1791. <https://doi.org/10.1111/poms.13014>

Mohammed, A., & Muneer, R. (2024). Governance quality and investor behaviour in fintech platforms: An institutional perspective. *International Review of Financial Analysis*, 92, 103219. <https://doi.org/10.1016/j.irfa.2024.103219>

Mollick, E. (2014). The dynamics of crowdfunding: An exploratory study. *Journal of Business Venturing*, 29(1), 1–16. <https://doi.org/10.1016/j.jbusvent.2013.06.005>

Mora-Cruz, A., et al. (2023). Crowdfunding platforms: A systematic literature review and a bibliometric analysis. *PLoS ONE*, 18(4), e0284512. <https://doi.org/10.1371/journal.pone.0284512>

Novatia Consulting. (2024). *Crowdfunding platforms feasibility study — Nigeria*.

Osakwe, C.N., Okeke, T.C., & Chinedu, E. (2022). Trust-building mechanisms in digital financial services: Evidence from Sub-Saharan Africa. *Journal of Business Research*, 147, 435–448. <https://doi.org/10.1016/j.jbusres.2022.04.053>

Passador, M.L. (2024). Crowdfunding regulation. *The Palgrave Encyclopedia of Private Equity*. <https://doi.org/10.2139/ssrn.4603816>

Putnam, R.D. (2000). *Bowling alone: The collapse and revival of American community*. Simon & Schuster. <https://doi.org/10.1145/358916.361990>

Ran, Z., Yoganarasimhan, H., & Zhao, M. (2025). Regulatory clarity and the development of digital financing. *Management Science*. <https://doi.org/10.1287/mnsc.2023.01538>

Roodman, D. (2009). A note on the theme of too many instruments. *Oxford Bulletin of Economics and Statistics*, 71(1), 135–158. <https://doi.org/10.1111/j.1468-0084.2008.00542.x>

SEC Nigeria. (2020). *SEC — Crowdfunding rules (Exposure Draft / Rules on Crowdfunding)*. Securities and Exchange Commission Nigeria.

Sendra-Pons, P., Garzón, D., & Revilla-Camacho, M.-Á. (2024a). Catalyzing success in equity crowdfunding: Trust-building strategies through signaling. *Review of Managerial Science*, 18, 2699–2721. <https://doi.org/10.1007/s11846-024-00734-4>

Sendra-Pons, P., Garzón, D., & Revilla-Camacho, M.-Á. (2024b). Untangling signalling strategies contributing to overfunding in reward-based crowdfunding. *European Research on Management and Business Economics*, 30(2), 100251. <https://doi.org/10.1016/j.iedeen.2024.100251>

Silva, V.J., Bonacelli, M.B.M., & Pacheco, C.A. (2021). *Economic analysis and digital platforms*. Proceedings of the ENEI, May 2021. <https://doi.org/10.5151/v-enei-640>

Spence, M. (1973). Job market signaling. *Quarterly Journal of Economics*, 87(3), 355–374. <https://doi.org/10.2307/1882010>

Tan, Y.H., & Reddy, S.K. (2021). Crowdfunding digital platforms: Backer networks and their impact on project outcomes. *Social Networks*, 64, 158–172. <https://doi.org/10.1016/j.socnet.2020.09.005>

Vijayagopal, P., Abid, F., & Raman, A. (2024). Regulations and fintech: A comparative study of the US, the UK, and India. *Journal of Risk and Financial Management*, 17(8), 324. <https://doi.org/10.3390/jrfm17080324>

Wei, X., Lin, M., Tan, Y., & You, W.J. (2020). An empirical study of the dynamic and differential effects of prefunding in reward-based crowdfunding. *Production and Operations Management*, 29(12), 2816–2834. <https://doi.org/10.1111/poms.13286>

Wessel, M., Thies, F., & Benlian, A. (2022). The role of prototype fidelity in technology crowdfunding. *Journal of Business Venturing*, 37(4), 106220. <https://doi.org/10.1016/j.jbusvent.2022.106220>

Wooldridge, J.M. (2019). *Introductory econometrics: A modern approach* (7th ed.). Cengage.

Yoro, M. (2024). Impact of financial reporting transparency on investor decision-making. *American Journal of Accounting*, 6(1), 25–36. <https://doi.org/10.47672/ajacc.1785>

Zribi, S. (2022). Effects of social influence on crowdfunding performance: Implications of the COVID-19 pandemic. *Humanities and Social Sciences Communications*, 9, 100. <https://doi.org/10.1057/s41599-022-01207-3>

Zvilichovsky, D., Danziger, S., & Steinhart, Y. (2018). Making-the-product-happen: A driver of crowdfunding participation. *Journal of Interactive Marketing*, 41, 81–93. <https://doi.org/10.1016/j.intmar.2017.10.002>