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This paper produces an algorithm that reproduces the original results of Cobb and Douglas (1928) using
restricted ordinary least squares. This algorithm is applied to the United States manufacturing industries
during 1987-2023. Data is retrieved from the Bureau of Labor Statistics. A panel econometric model is
implemented to analyze durable and nondurable goods with a granularity of three digits. Durable goods
technology is more efficient than nondurables. At the industry level “other transportation equipment” is
technologically more efficient, while “computers” is the most labor intensive, “chemicals” is the most
capital intensive, and “motor vehicles” is the most input intensive.
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INTRODUCTION

The Cobb-Douglas production function was first used by the economist and senator Douglas and
mathematician Charles W. Cobb, as the basis of their statistical research. They estimate the production
function for the manufacturing sector in the United States for the period of 1899-1922 with annual data.
Their estimation was a bold statistical attempt to find the shape of the production function, which was
studied abstractly in economic theory, but that few had attempted to specify (Ikeo, 2022). Ikeo (2022)
mentions that Solow uses the neoclassical assumption that factors are paid their marginal products or shares
in output production, inaugurating then a new field called ‘growth accounting’” where economic theory and
statistical estimation converge. Solow (1956) introduces the term of total factor productivity to designate
technical change, while Cobb and Douglas (1928) use the term of technology for the same concept.

In their famous 1928 paper, Cobb and Douglas developed the idea of using a production function to
relate an index of physical volume of manufactures in the United States to an index of the relative total
capital in manufacturing, and an index of the probable average numbers of wage-earners employed in this
sector. Considering this empirical setting, this paper employs an algorithm that uses Restricted Ordinary
Least Squares (ROLS) to reproduce the empirical results of Cobb and Douglas (1928) as developed by
Carbajal-De-Nova (2024). She found that her algorithm replicates the results of Cobb and Douglas exactly.
These findings demonstrate the robustness of her method. In this paper, this algorithm is applied to the
United States three digit manufacturing industries for the period 1987-2023, with annual data. The data is
retrieved from the Bureau of Labor Statistics, and in specific the Office of Productivity and Technology. A
panel model is used to elucidate the heterogeneity observed in the United States manufacturing sector at
the industry granularity level.

The use of panel models to analyze economic phenomena has been a subject to critique. Griliches and
Mairesse (1995) argue that the use of thinner and thinner slices of data, exacerbates estimation problems
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and misspecifications. Specifically, Mendershausen (1938) asserts that the production function is not
“identifiable,” because the input variables are determined simultaneously by the same forces that
determines output. Thereof, the borders among exogenous and endogenous variables in the production
functions are blurred. On the other hand, several studies highlight the advances of using panel models. For
instance, Mairesse and Hall (1996) estimate a Cobb-Douglas production function using a panel model with
the Generalized Method of Moments (GMM), addressing issues related to simultaneity and firm-specific
effects. Their findings underscore the significance of this type of research in enhancing both French and
United States manufacturing firms’ performance. Similarly, Blundell and Bond (1999) focus on United
States manufacturing firms to address challenges in estimating Cobb-Douglas production function using
panel data, where GMM estimators and lagged instruments were used to yield unbiased estimators, which
they use to reduce estimation problems like heterogeneity and simultaneity.

In Carbajal-De-Nova (2024), an algorithm is developed to reproduce the results of Cobb and Douglas
(1928), as mentioned previously. This study compares the estimations of Cobb and Douglas (1928) with
those obtained using the the algorithm based on ROLS. This comparison demonstrates that both sets of
estimators are identical. In the present paper, this algorithm is applied to a panel model belonging to United
States manufacturing industries. The analysis focuses on durable and nondurable goods at a three-digit level
of granularity. These three digits represent 19 industries aggregate according to the North American
Industry Classification System (NAICS) criteria. This panel econometric analysis is expected to provide
estimates of technology, capital and labor shares in value added for type of good (see Table 2), and 19
industries (see Table 3), taking advantage of fixed and random effects. Cobb and Douglas (1928) use the
following production function representation:

Y = ATK*LB (1)

where Y is the product, A is technology, n represents the total factor productivity, K represents the capital
production factor, L is the labor production factor, « is capital share in the product,  is labor share in the
product. Cobb and Douglas (1928) transform equation (1) with logarithms, as follows:

logY =nlogA + alogK + BlogL 2)

Over time the Cobb Douglas production function as depicted on equation (1) has been widely used to
measure changes in quantities of labor, and capital employed to produce a given volume of goods. Also, it
has being used to measure the output shares of each production input or their marginal productivities.
According with Griliches and Mairesse (1995), an innovation to the Cobb Douglas production function
theoretical framework involves modelling profit as a stochastic variable, acknowledging the influence of
random factors such as weather and unpredictable variations on factor performance. This acknowledgement
allows to explain output entrepreneurial choice under a behavioral theoretical framework of decision-
making. This innovation allows effects of output variance over entrepreneurial decisions. These authors
mention that behavioral economics takes a stance in this theoretical setting, as maximization decisions are
often based on expected rather than actual prices. This framework innovation assumes imperfect knowledge
and inertia on the part of the entrepreneur, with inputs treated as independent of the production function
disturbance term. Furthermore, as the use of the Cobb-Douglas production function has expanded various
critiques have emerged. For instance,

a) It has been claimed that the Cobb-Douglas production function represents a static and purely
accounting identity (Phelps and Brown, 1957),

b) The assumption of constant return to scale imposes a rigid functional form (Kmenta, 1967),

c) Key Cobb-Douglas production function assumptions like separability, substitution, perfect
competition, homogeneity in inputs and outputs, perfect knowledge and aggregation have
problems to hold empirically (Berndt and Christensen, 1973),

d) There is presence of multicollinearity, outliers, and absence of technical progress (Samuelson,
1979),
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e) Simple Ordinary Least Squares estimates of the production function would be biased and
inconsistent due to simultaneity and endogeneity issues (Griliches and Mairesse, 1995).
f) Certain production factors, such as “management” are difficult to quantify using standard
economic indicators. Although, “management” is an important production factor, it frequently
cannot be estimated (Nerlove, 1965).
This document is organized as follows: Section II presents the data used in this paper, including
descriptive statistics. Section III contains the panel model and the methodology of the simulation algorithm.
Section IV reports the econometric results. Finally, in the last section the conclusion is put forward.

DATA

The data used in the present investigation is retrieved from the Bureau of Labor Statistics, Office of
Productivity and Technology (OPT). According to the OPT Handbook of Methods “sectoral output is
defined as gross output less intra-industry transactions,” where “gross output is the total value of goods and
services produced by an industry,” and “intermediate inputs are the foreign and domestically sourced goods
and services used by an industry in the process of producing its gross output.” The OPT claims that “sectoral
output and value-added output measures converge as the intermediate inputs produced and consumed within
the sector approach the value of all intermediate input purchases.”

According to the OPT table titled “Annual total factor productivity and related measures for major
industries,” sectoral output is equal to the sum of capital costs plus labor costs plus intermediate input costs,
expressed in billions of current dollars. Cobb and Douglas (1928) use only capital and labor production
factors in equation (1), where their total income sum will be equal to total valued added. Also, for these
authors total value added would be equal to total physical product. Cobb and Douglas define capital as
factor machinery, tools, equipment and factory building excluding raw materials, goods in process of
manufacture and finished goods in warehouses. Given the OPT definition of sectoral output, the inclusion
of intermediate input costs in the production function becomes a detachment of Cobb Douglas definition of
value added or total physical product.

According with OPT definition of sectoral output, the inclusion of intermediate input costs could help
in determining precisely manufacturing total factor productivity. In this context, intermediate input costs
may help account for previously unmeasured production factors, potentially addressing gaps identified in
Carbajal-De-Nova (2024). In the literature this gap often receives different names “total factor
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productivity”, “level of industry productivity”, “technical change”, “aggregate productivity growth”,

2 3

“efficiency differences”, “measure of our ignorance”, or the “Solow residual” (Hall (1988), Griliches
(1996), Olley and Pakes (1996), Basu et. al,. (2006), Del Gatto et. al,. (2011), Bartelsman et. al,. (2013)).
The inclusion of intermediate inputs costs in the Cobb-Douglas production function estimation might
mitigate bias from omitted production factors. Therefore, given OPT data availability, the original Cobb-
Douglas functional form is modified to include the intermediate input costs as a production factor,

Y =f(K,L1D (3a)

This functional form is independent of measurement units. For example, consider this last equation in
billions of current dollars:

Y % 1,000,000,000US$ = f(K = 1,000,000,000US$, L * 1,000,000,000US$,I * 1,000,000,000US$)
Collecting monetary terms in the left hand side, the billions of current dollars cancel out:
Y *1,000,000,000US$ = 1,000,000,000US$f (K, L, 1)

Y % 1,000,000,000US$
1,000,000,000US$

= f(K,L,I)
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Y = f(K, L)

The same cancellation would have happened if billions of real dollars are instead considered. According
to Nerlove (1965) the use of dollar values is an alternative measure of outputs and inputs in physical units.
Therefore, it seems that the estimation of the Cobb-Douglas production function does not change with the
measurement units. Next, Table 1 presents the descriptive statistic mean for United States manufacturing,
durable and nondurable goods. This table also includes the mean for 19 industries at a three digit level
granularity.

TABLE 1
UNITED STATES MANUFACTURING. MEAN: DURABLE AND NONDURABLE GOODS,
AND THREE-DIGIT INDUSTRIES. BILLIONS OF CURRENT DOLLARS. 1987-2023

Naics Industry Value | Labor | Capital | Intermediate

code added Inputs
MN Manufacturing 176.96 | 15320 | 232.68 175.27
Nondurable goods 74.26 | 61.13 | 106.66 71.45

311-312 | Food and beverage and tobacco products 199.55 | 250.12 | 187.59 193.46
313-314 | Textile mills and textile product mills 100.55 | 115.13 | 95.02 101.34
315-316 | Apparel and leather and applied products 60.52 | 78.59 7247 53.52
322 Paper products 156.93 | 162.54 | 128.85 170.06
323 Printing and related support activities 132.14 | 227.66 | 132.76 121.55
324 Petroleum and coal products 311.25 | 63648 | 168.19 283.24
325 Chemical products 242.16 | 340.7 | 197.79 215.79
326 Plastics and rubber products 207.97 | 215.33 | 178.90 218.73
Durable goods 102.69 | 92.06 | 126.01 103.81

321 Wood products 168.23 | 144.79 | 157.90 178.68
327 Nonmetallic mineral products 167.41 | 232.85 | 148.87 160.69
331 Primary metal products 17578 | 309.8 | 122.06 182.7
332 Fabricated metal products 191.12 | 183.60 | 168.01 209.7
333 Machinery 201.51 | 277.08 | 156.16 227.89
334 Computer and electronic products 160.68 | 27433 | 177.23 117.45
335 fgfg;ré;aeln‘zguipment’ appliances, and 15400 | 15859 | 129.81 | 169.37
3361-3 Motor vehicles, bodies and trailers, and parts 193.00 | 221.80 | 13947 207.66
3364-9 Other transportation equipment 167.06 | 164.3 146.94 185.09
337 Furniture and related products 160 174.67 | 144.52 167.95
339 Miscellaneous manufacturing 21231 | 302.57 | 258.31 165.28

Notes: Durable and nondurable goods classification is taken from the Bureau of Economic Analysis, Table 6.4C.
Labor are full-time and part-time employees by industry. Data for the 19 three digit industries are taken from the
Bureau of Labor Statistics, Office of Productivity and Technology, Table Annual total factor productivity and related
measures for major industries. NAICS stands for North American Industry Classification System code. The 336
industry is divided in two parts by the OPT. The Stata 18 program was used.
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Next, Figure 1 visually represents the mean descriptive static reported on Table 1. The highest mean of
value added, labor and intermediate inputs happen in the industry 324 Petroleum and coal products, which
is a nondurable good. It can be observed that durable goods are also labor intensive since 331 Primary metal
products and 339 Miscellaneous manufacturing expend more than 300 billion on this production factor.

FIGURE 1
UNITED STATES MANUFACTURING. MEAN: DURABLE AND NONDURABLE GOODS,
AND THREE-DIGIT INDUSTRIES. BILLIONS OF CURRENT DOLLARS. 1987-2023
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Labor cost, capital costs, intermediate input costs, and sectoral value added are reported in billions of
current dollars in the OPT table mentioned above. In this paper, these time series are converted into index
numbers using 1987 as base year. This conversion follows the procedure outlined by Cobb and Douglas
(1928), for the generation of an index number with a base year corresponding to the first year of the analysis
period.

PANEL MODEL

According to Griliches and Mairesse (1995), there is cross-sectional census data on manufacturing for
the year of 1957, with states as units of observation. Nerlove (1965) discussed two approaches advanced
by Klein (1953), each offering different economic interpretations of the stochastic elements involved on
the Cobb Douglas production function. The first approach involves deriving a short-run industry supply
function for a competitive industry using cross-sectional data from a sample of firms in the industry. The
second approach develops a measure of relative economic efficiency based on estimates of production
functions that differ from firm to firm. Nerlove (1965) further argues that, in models of production within
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regulated industries, the cost function is the most appropriate reduce-form equation for estimation purposes.
This is because the assumption of a degree of returns to scale is invariant with respect to output level. Under
this lens, the use of ROLS in the present analysis does not impose constant returns to scale to the
manufacturing sector output, or any of its industries at three-digit aggregation level. Despites Carbajal-De
Nova (1924) and Cobb and Douglas (1928) assume constant returns to scale, both authors find a technology
estimate of 1.01. In this note, ROLS is expected to allow each manufacturing industry to express its
corresponding technology estimate, even under the assumption of constant returns to scale.

Nerlove (1965) further argues that, in models of production within regulated industries the cost function
is the most appropriate reduce-form equation for estimation purposes. This is because the assumption of a
certain degree of returns to scale is invariant with respect to output level. Nerlove points out that the reduce-
form possess certain desirable properties such as statistical consistency, and perhaps unbiasedness, as they
are exactly identified. He also highlights the fundamental duality between cost and the production functions
demonstrated by Shepard (1953). This demonstration guarantees a unique relationship between the
empirically estimated cost function and the underlying production function. Here, the envelope theorem is
mathematically justifying Shepard’s lemma, based on how cost and production functions are related
through optimization principles.

For their part, Mankiw, Romer and Weil (1992) assume an elasticity of substitution equal to one with
two production inputs, implying unbiased technical change in their cross-country income differences
econometric exercise. Here, the elasticity of substitution equals to one means the rate at which the input
factors can be substituted for each other at a constant rate, equals the percentage change in the marginal
rate of technical substitution to produce the same level of output. The transition of this model to incorporate
input costs might be suitable, if the concerning information is available.

The modified functional form of the Cobb-Douglas functional panel model form is expressed on
equation (3a) above. For convenience equation (3) is reproduced again in this section, now including an i
industry specific subindex to account for individual industry effects:

Yi = f(K;, L, I) (3b)

where Y; is sectoral output for type of industry, K; is capital costs for type of industry, L; is labor costs for
type of industry, I; is intermediate input costs for type of industry, i = MN, durable goods,nondurable
goods,311 — 312,313 — 314,315,316,321,322,323,324,325,326,327,331, 332,333,334, 335,
3361 —3363,3364 — 3369,337, 339. In exponential form equation (3b) becomes equation (4):

Y, = ATKELETY 4)

In this equation, no production factors are omitted, since the sum of the variables exactly reproduces
the output value, as discussed at the beginning of section I1. Taking the logarithm of both sides of equation
(4) gives:

logY; = nlogA; + alogK; + BlogL; + ylogl; %)

While Cobb and Douglas (1928) refer to n as technology, OPT refers to the same term as the
manufacturing total factor productivity. As indicated above, these terms are equivalent in the context of the
production function. Applying the logarithm function to the variables in the panel model allows the
estimates to be interpreted as elasticity coefficients. These coefficients represent the percentage change in
output resulting from a one percent change in each of the production factors, holding other factors constant.

The hypothesis of the panel model consists of considering the restriction that « + § + y = 1 embedded
in the ROLS (Restricted Ordinary Least Square econometric methodology). ROLS does not impose any
restriction on the estimate value of 17, allowing it to express a measure of productivity efficiency. If n = 1,
then the economy exhibits constant returns to scale, if > 1, then the economy exhibits increasing returns
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to scale, if n < 1, then the economy exhibits decreasing returns to scale. As explained in the previous
section, deflators are not used.

RESULTS

Table 2 reports the panel econometric estimates for the entire manufacturing sector without effects
(baseline), as well as for durable and nondurable goods using fixed and random effects, all estimated with
the simulation algorithm. Table 3 presents the results for an industry granularity of three-digits using ROLS.

TABLE 2
RESULTS OF THE ESTIMATES OF EQUATION (3a). UNITED STATES MANUFACTURING:
DURABLES AND NONDURABLE GOODS. BASELINE, FIXED AND RANDOM EFFECTS.

1987-2023
Independent variable Baseline Fixed effects Random effects
(t student)
1 Technology 1.01 1.01
(5.13)*** (5.13)***
Durable goods 1.018 1.04
(5.47)*** (9.48)***
Nondurable goods 1.007 0.98
(1.93)*** (0.70)
Labor 0.33 0.33
g (46.54)*** (46.54)***
Durable goods 0.40
(76.06)***
Nondurable goods 0.24
(28.47)***
a Capital 0.20 0.20
(36.86)*** (36.86)***
Durable goods 0.17
(215.24)***
Nondurable goods 0.23
(29.13)***
y Intermediate inputs 0.47 0.47
(81.12)*** (81.12)***
Durable goods 0.42
(-3.75)%**
Nondurable goods 0.51
(63.37)***
RMSE 0.0618 0.0616 0.0301

Notes: number of observations is 703. The 336 industry is divided in two parts by the OPT. The Stata 18 program was
used.

Considering the without effects column, the technology for the whole manufacturing in the United
States presents increasing returns to scale, although in a marginal manner, i.e., 1.01. At a national
manufacturing sector level, labor takes 33% of the value added, capital the 20%, and intermediate inputs
the 47%. In Carbajal-De-Nova (2024) labor and capital shares on value added were 11% and 89%
respectively for all sectors and industries in the United States. It is possible, in this last case, that capital
have included intermediate inputs in the sense that the OPT defines. If this were true, then the capital share
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is 20%+47%=67%, while labor share is 0.33. Income distribution favors capital during this period, in line
with Piketty (2015), Piketty (2021) research. Elasticities are given in this description in percentage terms.

Regarding individual fixed effects, between durable and nondurable goods the most efficient sector is
the first one: 101.8% versus 100.7%. The shares of labor, capital and intermediate inputs remain unchanged
for the manufacturing sector with respect to the without effects column. Labor share is larger in durables
(41%), than in nondurables (25%). Conversely, the capital share is larger in nondurable (23%), than in
durable goods (175). Similarly, the share of intermediate inputs is larger in nondurable (51%), than in
durable goods (42%).

Table 3 presents the results of a panel model without effects at the three-digit industry granularity level,
where ROLS methodology is fully applied. Among the three-digit industries, the most efficient industry in
manufacturing is 3364-9 other transportation equipment, with n = 1.02 or 102%, indicating increasing
returns to scale. The most labor intensive industry is 334 computer and electronic products with a = 0.60,
or with labor share in total value added of 60%. The most capital intensive industry is 325 chemical products
with § = 0.33, or with a capital share in total value added of 33%. 3361-3 Motor vehicles, bodies and
trailers, and parts is the industry that uses the most intermediate inputs with a y = 0.78, or 78% share in
total value added. Further analysis that considers the trade balance for manufacturing exports and imports
would clarify what proportion of this 78% intermediate input share is composed by exports and imports.

Table 2 and 3 include all production factors, as OPT data ensures that the sum of capital costs, labor
costs, and intermediate inputs cost is equal to sectoral output. Also, OPT assures that sectoral output
converges with value added, as previously mentioned. Although both Table 2 and 3 do no display full
estimates decimal precision, their estimates values sum up to one, consisted with ROLS methodology. The
7 elasticity of technology exhibits coefficients different to one, therefore, it seems that there is not
restriction that n = 1 as Samuelson (1979) once argued. This author argues that n = 1 would always hold,
letting the Cobb-Douglas production function estimations unable to express technical progress.

Chirinko (2002) and Berndt (1976) note that cross-sectional studies at the two-digit level tended to find
elasticities insignificantly different from one. They assume that technological change is Hicks neutral.
Technological efficiency is Hicks neutral if it does not influence the ratio of marginal products, for a given
capital-labor ratio. For their part, Dhrymes and Zarembka (1970) use two assumptions to compute
elasticities of substitution for two-digit United States manufacturing industries. These assumptions fall
within perfect competition outlined in Arrow et. al., (1961), as well as with a Cobb-Douglas production
function homogeneous of degree one. The data use by these authors included value added, wage bill,
number of employees, and the net book value of the capital stock for a given industry in each state. Their
results indicated that final consumption-oriented industries have high elasticities of substitution. On the
other hand, investment-oriented industries tend to be characterized by relatively low elasticities of
substitution. They conclude that a constant elasticity of substitution production function does not uniformly
describe well the production process of the two-digit industries analyzed. So, for these authors Hicks neutral
technological efficiency is not observable.

TABLE 3
RESULTS OF THE ESTIMATES OF EQUATION (3a). UNITED STATES MANUFACTURING:
THREE-DIGIT MANUFACTURING INDUSTRIES: FIXED AND RANDOM EFFECTS.

1987-2023
Naics Indust " « B Intem)l/ediate RMSE
code Y Technology Labor Capital inputs
311- Food and beverage and 0.99 0.14 0.15 0.70 0.0016
312 tobacco products (37.68)*** | (76.06)*** | (215.24)*** | (-3.75)***
313- Textile mills and textile 1.003 0.28 0.075 0.075 0.0041
314 product mills (3.89)*** | (46.43)*** | (22.46)*** | (113.06)***
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315- Apparel and leather and 0.96 0.32 0.23 0.43 0.0330
316 applied products 4.27)*** | (17.99)*** | (13.63)*** | (55.23)***

321 Wood products (12.17'3)1*** (219631)9*** (2591'411)1*** (2.855)2** hol

322 Paper products 0.99 0.23 0.18 0.57 0.0026
(1.77)* (82.06)*** | (64.75)*** | (209.49)***

323 Printing and related 1.001 0.30 0.10 0.58 0.0060
support activities (0.70)* (17.29)*** | (42.65)*** | (35.86)***

304 Petroleum and coal 0.96 0.05 0.20 0.74 0.0106
products (6.95)*** | (12.59)*** | (36.11)*** | (108.92)***

R - P P e

326 Plastics and rubber 0.99 0.23 0.12 0.64 0.0025
products (1.38)* (58.59)*** | (39.85)*** | (214.12)***

377 Nonmetallic mineral 0.99 0.28 0.18 0.52 0.0051
products (1.82)** (32.02)*** | (48.33)*** | (48.80)***

331 Primary metal products 0.99 0.19 0.10 0.70 0.0062
(3.45)*** | (34.13)*** | (15.85)*** | (61.65)***

332 Fabricated metal products (2219)2** (9996'?)2*** 3 506;§)2*** (2029'1524;*** 0.0020

333 Machinery 0.99 0.30 0.15 0.54 0.0032
(3.06)*** | (100.46)*** | (52.81)*** | (147.92)***

334 Computer and electronic 1.01 0.60 0.10 0.28 0.0280
products (23D)*** | (26.74)*** | (5.59)*** (41.22)***

335 Electrical equipment, 1.003 0.30 0.17 0.52 0.0057
appliances, and components (1.21) (29.98)*** | (31.39)*** | (74.91)***

3361-3 Motor \(ehicles, bodies 0.99 0.17 0.04 0.78 0.0149
and trailers, and parts (0.34) (17.17)*** | (12.12)*** | (74.30)***

3364-9 Other transportation 1.02 0.40 0.17 0.42 0.0172
equipment (6.08)*** | (22.43)*** | (22.62)*** | (29.71)***

337 Furniture and related 0.99 0.32 0.08 0.58 0.0020
products (0.17) (103.75)*** | (41.86)*¥** | (204.27)***

Notes: number of observations is 703. NAICS stands for North America Industrial Classification System. The 336
industry is divided in two parts by the OPT. The Stata 18 program was used.

CONCLUSION

There have been many attempts in the literature to measure economic activity and its underlying
relationships. Many authors who have sought to empirically estimate the Cobb-Douglas production
function have faced challenges related to availability data and its alignment with the theorical framework,
as well as to the assumptions embedded in the production function. Frequently, researchers must construct
indexes from available data to estimate technology change, as well as labor and capital shares.

However, due to increased data availability, advances in computational science, and a growing number
of available Input-Output matrices, National Statistics Offices are now capable of producing sectoral output
indicators, that account for intermediate inputs costs (excluding intra-industry transactions). The inclusion
of intermediate inputs ensures that sectoral output is fully allocated to production factors payments. In
contrast to earlier studies, which identified a residual typically attributed to missing production factors, this
note finds no such a residual. All components of sectoral output or value added are explicitly accounted
for. In Carbajal-De-Nova (2024) labor and capital shares on value added were reported ad 11% and 89%,
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respectively, across all United States sectors and industries. It is possible, that in this case capital shares
included intermediate inputs, as defined by the OPT.

According to the results in Tables 2 and 3, the elasticity of technology (17), or total factor productivity
deviates from one. Sectoral output or value added, as defined by OPT, consist of the sum of labor, capital
and intermediate costs. Following Nerlove (1965), the corresponding cost function is an appropriate reduce-
form equation to represent production relationships. Therefore, the constraint @ + f +y = 1, applied
through ROLS estimation, holds invariant with respect to input shares sum, but not to output technology
growth. This explains the variation in technology measures among manufacturing industries, even under
ROLS constraint. It appears that Samuelson (1979) criticism, that Cobb-Douglas production functions do
not exhibit technical progress would not hold true.

The elasticity coefficients on Table 2 suggest that the manufacturing sector have a marginal increasing
returns to scale, i.e., 1.01, labor share is 0.33, capital share is 0.20, and intermediate inputs share is 0.47. If
intermediate inputs are “fixed” inputs as defined by the OPT, then the total manufacturing capital share
would be 0.20 plus 0.47 equals to 0.67, while the manufacturing labor share is 0.33. Therefore, income
distribution favors capital during this period. Technology in durable goods is more efficient than in
nondurable goods (1.018 vs 1.007). For durable goods, labor, capital and intermediate shares are 0.40, 0.17,
and 0.42, respectively. For nondurable goods, labor, capital and intermediate shares are 0.24, 0.23, and
0.51, respectively. At the three-digit industry level, the most efficient industry is 3364-9 (other
transportation equipment), which exhibits increasing returns to scale with n = 1.02. The most labor-
intensive industry is 334 (computer and electronic products), with a share of 0.60. The most capital-
intensive industry is 325 (chemical products) with a share of 0.33, and the most intermediate input-intensive
industry is 3361-3 (motor vehicles, bodies and trailers), with a share of 0.78. Future work could incorporate
the trade balance to clarify what proportion of the 0.78 intermediate input share is accounted for exports
and imports.
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