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This paper produces an algorithm that reproduces the original results of Cobb and Douglas (1928) using 

restricted ordinary least squares. This algorithm is applied to the United States manufacturing industries 

during 1987-2023. Data is retrieved from the Bureau of Labor Statistics. A panel econometric model is 

implemented to analyze durable and nondurable goods with a granularity of three digits. Durable goods 

technology is more efficient than nondurables. At the industry level “other transportation equipment” is 

technologically more efficient, while “computers” is the most labor intensive, “chemicals” is the most 

capital intensive, and “motor vehicles” is the most input intensive. 
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INTRODUCTION 

 

The Cobb-Douglas production function was first used by the economist and senator Douglas and 

mathematician Charles W. Cobb, as the basis of their statistical research. They estimate the production 

function for the manufacturing sector in the United States for the period of 1899-1922 with annual data. 

Their estimation was a bold statistical attempt to find the shape of the production function, which was 

studied abstractly in economic theory, but that few had attempted to specify (Ikeo, 2022). Ikeo (2022) 

mentions that Solow uses the neoclassical assumption that factors are paid their marginal products or shares 

in output production, inaugurating then a new field called ‘growth accounting’ where economic theory and 

statistical estimation converge. Solow (1956) introduces the term of total factor productivity to designate 

technical change, while Cobb and Douglas (1928) use the term of technology for the same concept.  

In their famous 1928 paper, Cobb and Douglas developed the idea of using a production function to 

relate an index of physical volume of manufactures in the United States to an index of the relative total 

capital in manufacturing, and an index of the probable average numbers of wage-earners employed in this 

sector. Considering this empirical setting, this paper employs an algorithm that uses Restricted Ordinary 

Least Squares (ROLS) to reproduce the empirical results of Cobb and Douglas (1928) as developed by 

Carbajal-De-Nova (2024). She found that her algorithm replicates the results of Cobb and Douglas exactly. 

These findings demonstrate the robustness of her method. In this paper, this algorithm is applied to the 

United States three digit manufacturing industries for the period 1987-2023, with annual data. The data is 

retrieved from the Bureau of Labor Statistics, and in specific the Office of Productivity and Technology. A 

panel model is used to elucidate the heterogeneity observed in the United States manufacturing sector at 

the industry granularity level. 

The use of panel models to analyze economic phenomena has been a subject to critique. Griliches and 

Mairesse (1995) argue that the use of thinner and thinner slices of data, exacerbates estimation problems 
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and misspecifications. Specifically, Mendershausen (1938) asserts that the production function is not 

“identifiable,” because the input variables are determined simultaneously by the same forces that 

determines output. Thereof, the borders among exogenous and endogenous variables in the production 

functions are blurred. On the other hand, several studies highlight the advances of using panel models. For 

instance, Mairesse and Hall (1996) estimate a Cobb-Douglas production function using a panel model with 

the Generalized Method of Moments (GMM), addressing issues related to simultaneity and firm-specific 

effects. Their findings underscore the significance of this type of research in enhancing both French and 

United States manufacturing firms’ performance. Similarly, Blundell and Bond (1999) focus on United 

States manufacturing firms to address challenges in estimating Cobb-Douglas production function using 

panel data, where GMM estimators and lagged instruments were used to yield unbiased estimators, which 

they use to reduce estimation problems like heterogeneity and simultaneity. 

In Carbajal-De-Nova (2024), an algorithm is developed to reproduce the results of Cobb and Douglas 

(1928), as mentioned previously. This study compares the estimations of Cobb and Douglas (1928) with 

those obtained using the the algorithm based on ROLS. This comparison demonstrates that both sets of 

estimators are identical. In the present paper, this algorithm is applied to a panel model belonging to United 

States manufacturing industries. The analysis focuses on durable and nondurable goods at a three-digit level 

of granularity. These three digits represent 19 industries aggregate according to the North American 

Industry Classification System (NAICS) criteria. This panel econometric analysis is expected to provide 

estimates of technology, capital and labor shares in value added for type of good (see Table 2), and 19 

industries (see Table 3), taking advantage of fixed and random effects. Cobb and Douglas (1928) use the 

following production function representation: 

 

𝑌 = 𝐴𝜂𝐾𝛼𝐿𝛽 (1) 

 

where 𝑌 is the product, 𝐴 is technology, η represents the total factor productivity, 𝐾 represents the capital 

production factor, 𝐿 is the labor production factor, 𝛼 is capital share in the product, 𝛽 is labor share in the 

product. Cobb and Douglas (1928) transform equation (1) with logarithms, as follows: 

 

𝑙𝑜𝑔𝑌 = 𝜂𝑙𝑜𝑔𝐴 + 𝛼𝑙𝑜𝑔𝐾 + 𝛽𝑙𝑜𝑔𝐿 (2) 

 

Over time the Cobb Douglas production function as depicted on equation (1) has been widely used to 

measure changes in quantities of labor, and capital employed to produce a given volume of goods. Also, it 

has being used to measure the output shares of each production input or their marginal productivities. 

According with Griliches and Mairesse (1995), an innovation to the Cobb Douglas production function 

theoretical framework involves modelling profit as a stochastic variable, acknowledging the influence of 

random factors such as weather and unpredictable variations on factor performance. This acknowledgement 

allows to explain output entrepreneurial choice under a behavioral theoretical framework of decision-

making. This innovation allows effects of output variance over entrepreneurial decisions. These authors 

mention that behavioral economics takes a stance in this theoretical setting, as maximization decisions are 

often based on expected rather than actual prices. This framework innovation assumes imperfect knowledge 

and inertia on the part of the entrepreneur, with inputs treated as independent of the production function 

disturbance term. Furthermore, as the use of the Cobb-Douglas production function has expanded various 

critiques have emerged. For instance,  

a) It has been claimed that the Cobb-Douglas production function represents a static and purely 

accounting identity (Phelps and Brown, 1957),  

b) The assumption of constant return to scale imposes a rigid functional form (Kmenta, 1967),  

c) Key Cobb-Douglas production function assumptions like separability, substitution, perfect 

competition, homogeneity in inputs and outputs, perfect knowledge and aggregation have 

problems to hold empirically (Berndt and Christensen, 1973),  

d) There is presence of multicollinearity, outliers, and absence of technical progress (Samuelson, 

1979), 
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e) Simple Ordinary Least Squares estimates of the production function would be biased and 

inconsistent due to simultaneity and endogeneity issues (Griliches and Mairesse, 1995). 

f) Certain production factors, such as “management” are difficult to quantify using standard 

economic indicators. Although, “management” is an important production factor, it frequently 

cannot be estimated (Nerlove, 1965). 

This document is organized as follows: Section II presents the data used in this paper, including 

descriptive statistics. Section III contains the panel model and the methodology of the simulation algorithm. 

Section IV reports the econometric results. Finally, in the last section the conclusion is put forward. 

 

DATA 

 

The data used in the present investigation is retrieved from the Bureau of Labor Statistics, Office of 

Productivity and Technology (OPT). According to the OPT Handbook of Methods “sectoral output is 

defined as gross output less intra-industry transactions,” where “gross output is the total value of goods and 

services produced by an industry,” and “intermediate inputs are the foreign and domestically sourced goods 

and services used by an industry in the process of producing its gross output.” The OPT claims that “sectoral 

output and value-added output measures converge as the intermediate inputs produced and consumed within 

the sector approach the value of all intermediate input purchases.” 

According to the OPT table titled “Annual total factor productivity and related measures for major 

industries,” sectoral output is equal to the sum of capital costs plus labor costs plus intermediate input costs, 

expressed in billions of current dollars. Cobb and Douglas (1928) use only capital and labor production 

factors in equation (1), where their total income sum will be equal to total valued added. Also, for these 

authors total value added would be equal to total physical product. Cobb and Douglas define capital as 

factor machinery, tools, equipment and factory building excluding raw materials, goods in process of 

manufacture and finished goods in warehouses. Given the OPT definition of sectoral output, the inclusion 

of intermediate input costs in the production function becomes a detachment of Cobb Douglas definition of 

value added or total physical product.  

According with OPT definition of sectoral output, the inclusion of intermediate input costs could help 

in determining precisely manufacturing total factor productivity. In this context, intermediate input costs 

may help account for previously unmeasured production factors, potentially addressing gaps identified in 

Carbajal-De-Nova (2024). In the literature this gap often receives different names “total factor 

productivity”, “level of industry productivity”, “technical change”, “aggregate productivity growth”, 

“efficiency differences”, “measure of our ignorance”, or the “Solow residual” (Hall (1988), Griliches 

(1996), Olley and Pakes (1996), Basu et. al,. (2006), Del Gatto et. al,. (2011), Bartelsman et. al,. (2013)). 

The inclusion of intermediate inputs costs in the Cobb-Douglas production function estimation might 

mitigate bias from omitted production factors. Therefore, given OPT data availability, the original Cobb-

Douglas functional form is modified to include the intermediate input costs as a production factor, 

 

𝑌 = 𝑓(𝐾, 𝐿, 𝐼) (3a) 

 

This functional form is independent of measurement units. For example, consider this last equation in 

billions of current dollars: 

 

𝑌 ∗ 1,000,000,000𝑈𝑆$ = 𝑓(𝐾 ∗ 1,000,000,000𝑈𝑆$, 𝐿 ∗ 1,000,000,000𝑈𝑆$, 𝐼 ∗ 1,000,000,000𝑈𝑆$) 

 

Collecting monetary terms in the left hand side, the billions of current dollars cancel out: 

 

𝑌 ∗ 1,000,000,000𝑈𝑆$ = 1,000,000,000𝑈𝑆$𝑓(𝐾, 𝐿, 𝐼) 

 
𝑌 ∗ 1,000,000,000𝑈𝑆$

1,000,000,000𝑈𝑆$
= 𝑓(𝐾, 𝐿, 𝐼) 
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𝑌 = 𝑓(𝐾, 𝐿, 𝐼) 

 

The same cancellation would have happened if billions of real dollars are instead considered. According 

to Nerlove (1965) the use of dollar values is an alternative measure of outputs and inputs in physical units. 

Therefore, it seems that the estimation of the Cobb-Douglas production function does not change with the 

measurement units. Next, Table 1 presents the descriptive statistic mean for United States manufacturing, 

durable and nondurable goods. This table also includes the mean for 19 industries at a three digit level 

granularity. 

 

TABLE 1 

UNITED STATES MANUFACTURING. MEAN: DURABLE AND NONDURABLE GOODS, 

AND THREE-DIGIT INDUSTRIES. BILLIONS OF CURRENT DOLLARS. 1987-2023 

 

Naics 

code 
Industry 

Value 

added 

Labor 

 

Capital 

 

Intermediate 

Inputs 

MN Manufacturing 176.96 153.20 232.68 175.27 

 Nondurable goods 74.26 61.13 106.66 71.45 

311-312 Food and beverage and tobacco products 199.55 250.12 187.59 193.46 

313-314 Textile mills and textile product mills 100.55 115.13 95.02 101.34 

315-316 Apparel and leather and applied products 60.52 78.59 72.47 53.52 

322 Paper products 156.93 162.54 128.85 170.06 

323 Printing and related support activities 132.14 227.66 132.76 121.55 

324 Petroleum and coal products 311.25 636.48 168.19 283.24 

325 Chemical products 242.16 340.7 197.79 215.79 

326 Plastics and rubber products 207.97 215.33 178.90 218.73 

 Durable goods 102.69 92.06 126.01 103.81 

321 Wood products 168.23 144.79 157.90 178.68 

327 Nonmetallic mineral products 167.41 232.85 148.87 160.69 

331 Primary metal products 175.78 309.8 122.06 182.7 

332 Fabricated metal products 191.12 183.60 168.01 209.7 

333 Machinery 201.51 277.08 156.16 227.89 

334 Computer and electronic products 160.68 274.33 177.23 117.45 

335 
Electrical equipment, appliances, and 

components 
154.09 158.59 129.81 169.37 

3361-3 Motor vehicles, bodies and trailers, and parts 193.00 221.80 139.47 207.66 

3364-9 Other transportation equipment 167.06 164.3 146.94 185.09 

337 Furniture and related products 160 174.67 144.52 167.95 

339 Miscellaneous manufacturing 212.31 302.57 258.31 165.28 

Notes: Durable and nondurable goods classification is taken from the Bureau of Economic Analysis, Table 6.4C. 

Labor are full-time and part-time employees by industry. Data for the 19 three digit industries are taken from the 

Bureau of Labor Statistics, Office of Productivity and Technology, Table Annual total factor productivity and related 

measures for major industries. NAICS stands for North American Industry Classification System code. The 336 

industry is divided in two parts by the OPT. The Stata 18 program was used. 
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Next, Figure 1 visually represents the mean descriptive static reported on Table 1. The highest mean of 

value added, labor and intermediate inputs happen in the industry 324 Petroleum and coal products, which 

is a nondurable good. It can be observed that durable goods are also labor intensive since 331 Primary metal 

products and 339 Miscellaneous manufacturing expend more than 300 billion on this production factor. 

 

FIGURE 1 

UNITED STATES MANUFACTURING. MEAN: DURABLE AND NONDURABLE GOODS, 

AND THREE-DIGIT INDUSTRIES. BILLIONS OF CURRENT DOLLARS. 1987-2023 

 

 
 

Labor cost, capital costs, intermediate input costs, and sectoral value added are reported in billions of 

current dollars in the OPT table mentioned above. In this paper, these time series are converted into index 

numbers using 1987 as base year. This conversion follows the procedure outlined by Cobb and Douglas 

(1928), for the generation of an index number with a base year corresponding to the first year of the analysis 

period. 

 

PANEL MODEL 

 

According to Griliches and Mairesse (1995), there is cross-sectional census data on manufacturing for 

the year of 1957, with states as units of observation. Nerlove (1965) discussed two approaches advanced 

by Klein (1953), each offering different economic interpretations of the stochastic elements involved on 

the Cobb Douglas production function. The first approach involves deriving a short-run industry supply 

function for a competitive industry using cross-sectional data from a sample of firms in the industry. The 

second approach develops a measure of relative economic efficiency based on estimates of production 

functions that differ from firm to firm. Nerlove (1965) further argues that, in models of production within 
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regulated industries, the cost function is the most appropriate reduce-form equation for estimation purposes. 

This is because the assumption of a degree of returns to scale is invariant with respect to output level. Under 

this lens, the use of ROLS in the present analysis does not impose constant returns to scale to the 

manufacturing sector output, or any of its industries at three-digit aggregation level. Despites Carbajal-De 

Nova (1924) and Cobb and Douglas (1928) assume constant returns to scale, both authors find a technology 

estimate of 1.01. In this note, ROLS is expected to allow each manufacturing industry to express its 

corresponding technology estimate, even under the assumption of constant returns to scale.  

Nerlove (1965) further argues that, in models of production within regulated industries the cost function 

is the most appropriate reduce-form equation for estimation purposes. This is because the assumption of a 

certain degree of returns to scale is invariant with respect to output level. Nerlove points out that the reduce-

form possess certain desirable properties such as statistical consistency, and perhaps unbiasedness, as they 

are exactly identified. He also highlights the fundamental duality between cost and the production functions 

demonstrated by Shepard (1953). This demonstration guarantees a unique relationship between the 

empirically estimated cost function and the underlying production function. Here, the envelope theorem is 

mathematically justifying Shepard’s lemma, based on how cost and production functions are related 

through optimization principles. 

For their part, Mankiw, Romer and Weil (1992) assume an elasticity of substitution equal to one with 

two production inputs, implying unbiased technical change in their cross-country income differences 

econometric exercise. Here, the elasticity of substitution equals to one means the rate at which the input 

factors can be substituted for each other at a constant rate, equals the percentage change in the marginal 

rate of technical substitution to produce the same level of output. The transition of this model to incorporate 

input costs might be suitable, if the concerning information is available. 

The modified functional form of the Cobb-Douglas functional panel model form is expressed on 

equation (3a) above. For convenience equation (3) is reproduced again in this section, now including an 𝑖 
industry specific subindex to account for individual industry effects: 

 

𝑌𝑖 = 𝑓(𝐾𝑖, 𝐿𝑖 , 𝐼𝑖) (3b) 

 

where 𝑌𝑖 is sectoral output for type of industry, 𝐾𝑖 is capital costs for type of industry, 𝐿𝑖 is labor costs for 

type of industry, 𝐼𝑖 is intermediate input costs for type of industry, 𝑖 = 𝑀𝑁, 𝑑𝑢𝑟𝑎𝑏𝑙𝑒 𝑔𝑜𝑜𝑑𝑠, 𝑛𝑜𝑛𝑑𝑢𝑟𝑎𝑏𝑙𝑒 

𝑔𝑜𝑜𝑑𝑠, 311 − 312, 313 − 314, 315, 316, 321, 322, 323, 324, 325, 326, 327, 331, 332, 333, 334, 335,  
3361 − 3363, 3364 − 3369, 337, 339. In exponential form equation (3b) becomes equation (4): 

 

𝑌𝑖 = 𝐴𝑖
𝜂

𝐾𝑖
𝛼𝐿𝑖

𝛽
𝐼𝑖

𝛾
 (4) 

 

In this equation, no production factors are omitted, since the sum of the variables exactly reproduces 

the output value, as discussed at the beginning of section II. Taking the logarithm of both sides of equation 

(4) gives: 

 

𝑙𝑜𝑔𝑌𝑖 = 𝜂𝑙𝑜𝑔𝐴𝑖 + 𝛼𝑙𝑜𝑔𝐾𝑖 + 𝛽𝑙𝑜𝑔𝐿𝑖 + 𝛾𝑙𝑜𝑔𝐼𝑖 (5) 

 

While Cobb and Douglas (1928) refer to 𝜂  as technology, OPT refers to the same term as the 

manufacturing total factor productivity. As indicated above, these terms are equivalent in the context of the 

production function. Applying the logarithm function to the variables in the panel model allows the 

estimates to be interpreted as elasticity coefficients. These coefficients represent the percentage change in 

output resulting from a one percent change in each of the production factors, holding other factors constant. 

The hypothesis of the panel model consists of considering the restriction that 𝛼 + 𝛽 + 𝛾 = 1 embedded 

in the ROLS (Restricted Ordinary Least Square econometric methodology). ROLS does not impose any 

restriction on the estimate value of 𝜂, allowing it to express a measure of productivity efficiency. If 𝜂 = 1, 

then the economy exhibits constant returns to scale, if 𝜂 > 1, then the economy exhibits increasing returns 
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to scale, if 𝜂 < 1 , then the economy exhibits decreasing returns to scale. As explained in the previous 

section, deflators are not used.  

 

RESULTS 

 

Table 2 reports the panel econometric estimates for the entire manufacturing sector without effects 

(baseline), as well as for durable and nondurable goods using fixed and random effects, all estimated with 

the simulation algorithm. Table 3 presents the results for an industry granularity of three-digits using ROLS.  

 

TABLE 2 

RESULTS OF THE ESTIMATES OF EQUATION (3a). UNITED STATES MANUFACTURING: 

DURABLES AND NONDURABLE GOODS. BASELINE, FIXED AND RANDOM EFFECTS. 

1987-2023 

 

Independent variable 

(t student) 
Baseline Fixed effects Random effects 

𝜂 Technology 1.01 

(5.13)*** 

 1.01 

(5.13)*** 

Durable goods  1.018 

(5.47)*** 

1.04 

(9.48)*** 

Nondurable goods  1.007 

(1.93)*** 

0.98 

(0.70) 

𝛽 Labor 0.33 

(46.54)*** 

0.33 

(46.54)*** 

 

Durable goods   0.40 

(76.06)*** 

Nondurable goods   0.24 

(28.47)*** 

𝛼 Capital 0.20 

(36.86)*** 

0.20 

(36.86)*** 

 

Durable goods   0.17 

(215.24)*** 

Nondurable goods   0.23 

(29.13)*** 

𝛾 Intermediate inputs 0.47 

(81.12)*** 

0.47 

(81.12)*** 

 

Durable goods   0.42 

(-3.75)*** 

Nondurable goods   0.51 

(63.37)*** 

RMSE 0.0618 0.0616 0.0301 
Notes: number of observations is 703. The 336 industry is divided in two parts by the OPT. The Stata 18 program was 

used. 

 

Considering the without effects column, the technology for the whole manufacturing in the United 

States presents increasing returns to scale, although in a marginal manner, i.e., 1.01. At a national 

manufacturing sector level, labor takes 33% of the value added, capital the 20%, and intermediate inputs 

the 47%. In Carbajal-De-Nova (2024) labor and capital shares on value added were 11% and 89% 

respectively for all sectors and industries in the United States. It is possible, in this last case, that capital 

have included intermediate inputs in the sense that the OPT defines. If this were true, then the capital share 
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is 20%+47%=67%, while labor share is 0.33. Income distribution favors capital during this period, in line 

with Piketty (2015), Piketty (2021) research. Elasticities are given in this description in percentage terms. 

Regarding individual fixed effects, between durable and nondurable goods the most efficient sector is 

the first one: 101.8% versus 100.7%. The shares of labor, capital and intermediate inputs remain unchanged 

for the manufacturing sector with respect to the without effects column. Labor share is larger in durables 

(41%), than in nondurables (25%). Conversely, the capital share is larger in nondurable (23%), than in 

durable goods (175). Similarly, the share of intermediate inputs is larger in nondurable (51%), than in 

durable goods (42%). 

Table 3 presents the results of a panel model without effects at the three-digit industry granularity level, 

where ROLS methodology is fully applied. Among the three-digit industries, the most efficient industry in 

manufacturing is 3364-9 other transportation equipment, with 𝜂 = 1.02  or 102%, indicating increasing 

returns to scale. The most labor intensive industry is 334 computer and electronic products with 𝛼 = 0.60, 

or with labor share in total value added of 60%. The most capital intensive industry is 325 chemical products 

with 𝛽 = 0.33, or with a capital share in total value added of 33%. 3361-3 Motor vehicles, bodies and 

trailers, and parts is the industry that uses the most intermediate inputs with a 𝛾 = 0.78, or 78% share in 

total value added. Further analysis that considers the trade balance for manufacturing exports and imports 

would clarify what proportion of this 78% intermediate input share is composed by exports and imports.  

Table 2 and 3 include all production factors, as OPT data ensures that the sum of capital costs, labor 

costs, and intermediate inputs cost is equal to sectoral output. Also, OPT assures that sectoral output 

converges with value added, as previously mentioned. Although both Table 2 and 3 do no display full 

estimates decimal precision, their estimates values sum up to one, consisted with ROLS methodology. The 

𝜂  elasticity of technology exhibits coefficients different to one, therefore, it seems that there is not 

restriction that 𝜂 = 1 as Samuelson (1979) once argued. This author argues that 𝜂 = 1 would always hold, 

letting the Cobb-Douglas production function estimations unable to express technical progress. 

Chirinko (2002) and Berndt (1976) note that cross-sectional studies at the two-digit level tended to find 

elasticities insignificantly different from one. They assume that technological change is Hicks neutral. 

Technological efficiency is Hicks neutral if it does not influence the ratio of marginal products, for a given 

capital-labor ratio. For their part, Dhrymes and Zarembka (1970) use two assumptions to compute 

elasticities of substitution for two-digit United States manufacturing industries. These assumptions fall 

within perfect competition outlined in Arrow et. al., (1961), as well as with a Cobb-Douglas production 

function homogeneous of degree one. The data use by these authors included value added, wage bill, 

number of employees, and the net book value of the capital stock for a given industry in each state. Their 

results indicated that final consumption-oriented industries have high elasticities of substitution. On the 

other hand, investment-oriented industries tend to be characterized by relatively low elasticities of 

substitution. They conclude that a constant elasticity of substitution production function does not uniformly 

describe well the production process of the two-digit industries analyzed. So, for these authors Hicks neutral 

technological efficiency is not observable. 

 

TABLE 3 

RESULTS OF THE ESTIMATES OF EQUATION (3a). UNITED STATES MANUFACTURING: 

THREE-DIGIT MANUFACTURING INDUSTRIES: FIXED AND RANDOM EFFECTS. 

1987-2023 

 

Naics 

code 
Industry 

𝜂 

Technology 

𝛼 

Labor 

𝛽 

Capital 

𝛾 

Intermediate 

inputs 

RMSE 

311-

312 

Food and beverage and 

tobacco products 

0.99 

(37.68)*** 

0.14 

(76.06)*** 

0.15 

(215.24)*** 

0.70 

(-3.75)*** 

0.0016 

 

313-

314 

Textile mills and textile 

product mills 

1.003 

(3.89)*** 

0.28 

(46.43)*** 

0.075 

(22.46)*** 

0.075 

(113.06)*** 

0.0041 
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315-

316 

Apparel and leather and 

applied products 

0.96 

(4.27)*** 

0.32 

(17.99)*** 

0.23 

(13.63)*** 

0.43 

(55.23)*** 

0.0330 

321 Wood products 
1.01 

(12.78)*** 

0.29 

(21.64)*** 

0.11 

(25.14)*** 

0.58 

(2.95)*** 

0.0134 

 

322 Paper products 
0.99 

(1.77)* 

0.23 

(82.06)*** 

0.18 

(64.75)*** 

0.57 

(209.49)*** 

0.0026 

 

323 
Printing and related 

support activities 

1.001 

(0.70)* 

0.30 

(17.29)*** 

0.10 

(42.65)*** 

0.58 

(35.86)*** 

0.0060 

 

324 
Petroleum and coal 

products 

0.96 

(6.95)*** 

0.05 

(12.59)*** 

0.20 

(36.11)*** 

0.74 

(108.92)*** 

0.0106 

 

325 Chemical products 
0.987 

(4.46)*** 

0.17 

(18.78)*** 

0.33 

(57.05)*** 

0.49 

(54.64)*** 

0.0091 

 

326 
Plastics and rubber 

products 

0.99 

(1.38)* 

0.23 

(58.59)*** 

0.12 

(39.85)*** 

0.64 

(214.12)*** 

0.0025 

 

327 
Nonmetallic mineral 

products 

0.99 

(1.82)** 

0.28 

(32.02)*** 

0.18 

(48.33)*** 

0.52 

(48.80)*** 

0.0051 

 

331 Primary metal products 
0.99 

(3.45)*** 

0.19 

(34.13)*** 

0.10 

(15.85)*** 

0.70 

(61.65)*** 

0.0062 

 

332 Fabricated metal products 
0.99 

(2.81)*** 

0.32 

(99.61)*** 

0.12 

(35.68)*** 

0.54 

(202.12)*** 

0.0020 

 

333 Machinery 
0.99 

(3.06)*** 

0.30 

(100.46)*** 

0.15 

(52.81)*** 

0.54 

(147.92)*** 

0.0032 

 

334 
Computer and electronic 

products 

1.01 

(2.31)*** 

0.60 

(26.74)*** 

0.10 

(5.59)*** 

0.28 

(41.22)*** 

0.0280 

 

335 
Electrical equipment, 

appliances, and components 

1.003 

(1.21) 

0.30 

(29.98)*** 

0.17 

(31.39)*** 

0.52 

(74.91)*** 

0.0057 

 

3361-3 
Motor vehicles, bodies 

and trailers, and parts 

0.99 

(0.34) 

0.17 

(17.17)*** 

0.04 

(12.12)*** 

0.78 

(74.30)*** 

0.0149 

 

3364-9 
Other transportation 

equipment 

1.02 

(6.08)*** 

0.40 

(22.43)*** 

0.17 

(22.62)*** 

0.42 

(29.71)*** 

0.0172 

 

337 
Furniture and related 

products 

0.99 

(0.17) 

0.32 

(103.75)*** 

0.08 

(41.86)*** 

0.58 

(204.27)*** 

0.0020 

 
Notes: number of observations is 703. NAICS stands for North America Industrial Classification System. The 336 

industry is divided in two parts by the OPT. The Stata 18 program was used. 

 

CONCLUSION 

 

There have been many attempts in the literature to measure economic activity and its underlying 

relationships. Many authors who have sought to empirically estimate the Cobb-Douglas production 

function have faced challenges related to availability data and its alignment with the theorical framework, 

as well as to the assumptions embedded in the production function. Frequently, researchers must construct 

indexes from available data to estimate technology change, as well as labor and capital shares.  

However, due to increased data availability, advances in computational science, and a growing number 

of available Input-Output matrices, National Statistics Offices are now capable of producing sectoral output 

indicators, that account for intermediate inputs costs (excluding intra-industry transactions). The inclusion 

of intermediate inputs ensures that sectoral output is fully allocated to production factors payments. In 

contrast to earlier studies, which identified a residual typically attributed to missing production factors, this 

note finds no such a residual. All components of sectoral output or value added are explicitly accounted 

for. In Carbajal-De-Nova (2024) labor and capital shares on value added were reported ad 11% and 89%, 
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respectively, across all United States sectors and industries. It is possible, that in this case capital shares 

included intermediate inputs, as defined by the OPT. 

According to the results in Tables 2 and 3, the elasticity of technology (𝜂), or total factor productivity 

deviates from one. Sectoral output or value added, as defined by OPT, consist of the sum of labor, capital 

and intermediate costs. Following Nerlove (1965), the corresponding cost function is an appropriate reduce-

form equation to represent production relationships. Therefore, the constraint 𝛼 + 𝛽 + 𝛾 = 1 , applied 

through ROLS estimation, holds invariant with respect to input shares sum, but not to output technology 

growth. This explains the variation in technology measures among manufacturing industries, even under 

ROLS constraint. It appears that Samuelson (1979) criticism, that Cobb-Douglas production functions do 

not exhibit technical progress would not hold true. 

The elasticity coefficients on Table 2 suggest that the manufacturing sector have a marginal increasing 

returns to scale, i.e., 1.01, labor share is 0.33, capital share is 0.20, and intermediate inputs share is 0.47. If 

intermediate inputs are “fixed” inputs as defined by the OPT, then the total manufacturing capital share 

would be 0.20 plus 0.47 equals to 0.67, while the manufacturing labor share is 0.33. Therefore, income 

distribution favors capital during this period. Technology in durable goods is more efficient than in 

nondurable goods (1.018 vs 1.007). For durable goods, labor, capital and intermediate shares are 0.40, 0.17, 

and 0.42, respectively. For nondurable goods, labor, capital and intermediate shares are 0.24, 0.23, and 

0.51, respectively. At the three-digit industry level, the most efficient industry is 3364-9 (other 

transportation equipment), which exhibits increasing returns to scale with 𝜂 = 1.02 . The most labor-

intensive industry is 334 (computer and electronic products), with a share of 0.60. The most capital-

intensive industry is 325 (chemical products) with a share of 0.33, and the most intermediate input-intensive 

industry is 3361-3 (motor vehicles, bodies and trailers), with a share of 0.78. Future work could incorporate 

the trade balance to clarify what proportion of the 0.78 intermediate input share is accounted for exports 

and imports. 
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